ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Числа рациональные и иррациональные
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 5. Краткие выводы

В этой главе рассматривались так называемые «алгебраические иррациональности». Мы видели, что имеется бесконечно много иррациональных чисел, а также познакомились со способами построения некоторых из них, исходя из данного иррационального числа.

Кроме того, был разработан следующий метод определения, является или данное число k иррациональным.

Сначала ищется алгебраическое уравнение с целыми коэффициентами:

которому удовлетворяет значение (если мы не сможем найти такое уравнение, то наш метод не применим). Затем применяется теорема 3 или, еслисп ее следствие 1. Нередко бывает ясно, что уравнение вообще не имеет рациональных корней. Тогда k, очевидно, должно быть иррациональным корнем. Иногда на глаз видно, что k отличается от всех возможных рациональных корней уравнения, и тогда мы снова заключаем, что k иррационально. Наконец, можно непосредственной подстановкой отбирать из всех возможных рациональных корней те, которые действительно являются корнями уравнения. Тогда, чтобы доказать иррациональность числа k, нужно лишь показать, что k отличается от всех этих рациональных корней.

В следующей главе мы используем методы настоящей главы для доказательства иррациональности многих чисел, фигурирующих в таблицах тригонометрических функций, а также чисел, фигурирующих в таблицах логарифмов (здесь нам понадобится основная теорема арифметики). Наконец, прочтя следующую главу книги, мы узнаем, что существуют иррациональные числа, не являющиеся корнями никаких алгебраических уравнений с целыми коэффициентами.

<< Предыдущий параграф Следующий параграф >>
Оглавление