1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
Макеты страниц
ГЛАВА I. Натуральные и целые числаИсходную числовую систему в математике образуют обычные числа, используемые для счета: Это — положительные целые числа, называемые также натуральными числами. Наименьшим натуральным числом является 1, но наибольшего натурального числа не существует, поскольку, какое бы большое число мы ни взяли, существуют еще большие натуральные числа. Мы говорим поэтому, что имеется бесконечно много натуральных чисел. При сложении любых двух натуральных чисел в результате получается также натуральное число, например 4 + 4 = 8 или 4 + 7 = 11. Подобным же образом и при умножении любых двух натуральных чисел в результате получается натуральное число, так, например, 4х7=28. Эти два свойства можно кратко сформулировать, сказав, что совокупность натуральных чисел замкнута относительно сложения и замкнута относительно умножения. Вообще, если имеются совокупность объектов (скажем, множество всех натуральных чисел) и операция (скажем, сложение), такие, что к каким бы элементам этой совокупности ни применить рассматриваемую операцию (скажем, к 4 и 7), в результате получается элемент исходной совокупности, то мы говорим, что наша совокупность замкнута относительно рассматриваемой операции. Возьмем теперь множество, образованное только числами 1, 2, 3. Это множество не замкнуто относительно сложения, поскольку 1+3 = 4, а 4 не является элементом рассматриваемого множества. Говоря о множестве натуральных чисел, мы будем иметь в виду множество всех натуральных чисел. Желая рассмотреть лишь некоторые из них, мы будем точно указывать, какие числа включаются в наше множество. Таким образом, мы видели, что множество натуральных чисел замкнуто относительно сложения, в то время как множество, состоящее лишь из трех натуральных чисел 1, 2, 3, относительно сложения не замкнуто. Совокупность натуральных чисел не замкнута относительно вычитания. Чтобы убедиться в этом, нужно лишь показать, что не всякое вычитание одного натурального числа из другого приводит к натуральному числу. Например, если 7 вычесть из 4, то в результате мы получим —3, т. е. не натуральное число. Конечно, при вычитании 4 из 7 в результате получается натуральное число 3. Однако в соответствии с данным определением мы должны сказать, что множество чисел не замкнуто относительно вычитания, если результат хотя бы одного возможного вычитания не содержится в этом множестве. Аналогично множество натуральных чисел не замкнуто относительно деления, так как, например, при делении 4 на 7 получается дробь 4/7, не являющаяся натуральным числом. Во многих случаях при делении одного натурального числа на другое в результате получается натуральное число; так, например,
|
Оглавление
|