ЕГЭ и ОГЭ
Живые анекдоты
Главная > Математика > Числа рациональные и иррациональные
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 2. Конечные и бесконечные десятичные дроби

Имеется иное представление рационального числа 1/2, отличное от представлений вида 2/4, 3/6, 4/8 и т. д. Мы подразумеваем представление в виде десятичной дроби 0,5. Одни дроби имеют конечные десятичные представления, например,

в то время как десятичные представления других дробей бесконечны:

Эти бесконечные десятичные дроби можно получить из соответствующих рациональных дробей, деля числитель на знаменатель. Например, в случае дроби 5/11, деля 5,000... на 11, получаем 0,454545...

Какие рациональные дроби имеют конечные десятичные представления? Прежде чем ответить на этот вопрос в общем случае, рассмотрим конкретный пример. Возьмем, скажем, конечную десятичную дробь 0,8625. Мы знаем, что

и что любая конечная десятичная дробь может быть записана в виде рациональной десятичной дроби со знаменателем, равным 10, 100, 1000 или какой-либо другой степени 10.

Приводя дробь справа к несократимой дроби, получаем

Знаменатель 80 получен делением 10 000 на 125 — наибольший общий делитель 10 000 и 8625. Поэтому в разложение на простые множители числа 80, как и числа 10 000, входят только два простых множителя: 2 и 5. Если бы мы начинали не с 0,8625, а с любой другой конечной десятичной дроби, то получившаяся несократимая рациональная дробь тоже обладала бы этим свойством. Иначе говоря, в разложение знаменателя b на простые множители могли бы входить лишь простые числа 2 и 5, поскольку b есть делитель некоторой степени 10, а . Это обстоятельство оказывается определяющим, а именно имеет место следующее общее утверждение:

Несократимая рациональная дробь имеет конечное десятичное представление тогда и только тогда, когда число b не имеет простых делителей, личных от 2 и 5.

Отметим, что при этом b не обязано иметь среди своих простых делителей оба числа 2 и 5: оно может делиться лишь на одно из них или не делиться на них вовсе. Например,

здесь b соответственно равно 25, 16 и 1. Существенным является отсутствие у b других делителей, отличных от 2 и 5.

Сформулированное выше предложение содержит выражение тогда и только тогда. До сих пор мы доказали лишь ту часть, которая относится к обороту только тогда. Именно мы показали, что разложение рационального числа в десятичную дробь будет конечным лишь в том случае, когда b не имеет простых делителей, отличных от 2 и 5.

(Иными словами, если b делится на простое число, отличное от 2 и 5, то несократимая дробь не имеет конечного десятичного выражения.)

Та часть предложения, которая относится к слову тогда, утверждает, что если целое число b не имеет f других простых делителей, кроме 2 и 5, то несократимая рациональная дробь может быть представлена конечной десятичной дробью. Чтобы это доказать, мы должны взять произвольную несократимую рациональную дробь , у которой b не имеет других простых делителей, кроме 2 и 5, и убедиться в том, что соответствующая ей десятичная дробь конечна. Рассмотрим сначала пример. Пусть

Для получения десятичного разложения преобразуем эту дробь в дробь, знаменатель которой представляет собой целую степень десяти. Этого можно достигнуть, умножив числитель и знаменатель на :

Приведенное рассуждение можно распространить на общий случай следующим образом. Предположим, что b имеет вид , где тип — неотрицательные целые числа (т. е. положительные числа или нуль). Возможны два случая: либо меньше или равно (это условие записывается ), либо больше (что записывается ). При умножим числитель и знаменатель дроби на

Поскольку целое число не отрицательно (т. е. положительно или равно нулю), то , а следовательно, и а — целое положительное число. Положим . Тогда

Но деление целого числа на сводится просто к постановке запятой на соответствующем месте в десятичном представлении этого числа. Поэтому мы получим конечную десятичную дробь.

Во втором случае, когда умножим числитель и знаменатель дроби на :

Отсюда, обозначив целое число через d, получаем

Таким образом, здесь, как и в первом случае, мы приходим к конечной десятичной дроби.

Упражнение

Следующие рациональные дроби представить в виде конечных десятичных дробей:

<< Предыдущий параграф Следующий параграф >>
Оглавление