Главная > Математика > Геометрическое моделирование
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

9.8. Моделирование света

Изображение окружающих нас предметов формируется на сетчатке глаза потоками света, пришедшими от этих предметов. Пришедший свет является отраженным или излученным поверхностями окружающих предметов. Если некоторое тело полностью поглощает падающий на него свет, то оно называется абсолютно черным телом. Если тело полностью пропускает падающий на него свет, то оно называется абсолютно прозрачным телом. Реальные предметы некоторую часть падающего света поглощают, превращая его в тепло, некоторую часть света пропускают и некоторую часть — отражают. Будем считать, что для моделируемых объектов доля излученного и поглощенного света незначительна по сравнению с долей пропущенного и отраженного света.

Поглощенная часть, пропущенная часть и отраженная часть падающего света зависят от длины его волны. Цвет предмета зависит и от длины волны падающего света и от областей спектра, которые поверхность предмета отражает в большей степени. В этом параграфе мы не будем останавливаться на цвете тел, а рассмотрим взаимодействие тел с потоком света некоторой длины волны. Световой поток мы будем характеризовать интенсивностью света — плотностью потока энергии световой волны.

Тоновое изображение зависит от положения точки наблюдения, положения источников света относительно геометрической модели и от оптических свойств ее поверхностей. Поверхность объекта частично поглощает падающий свет, частично — пропускает, а частично — отражает. При моделировании отраженного света его условно делят на две части: диффузно отраженный и зеркально отраженный. Это деление связано с законами, по которым описывается направление лучей отраженного света. Соответственно поверхностям приписываются свойства диффузного и зеркального отражения. Если большую часть отраженного поверхностью света можно описать законом диффузного отражения, то поверхность называют матовой, если же большую часть отраженного поверхностью света можно описать законом зеркального отражения, то ее называют зеркальной. Объекты, поверхности которых способны пропускать большую часть падающего на них света вглубь, называют прозрачными.

Пропущенный через поверхность свет также условно делят на две части: диффузно пропущенный и направленно пропущенный. Направленно пропущенный свет претерпевает преломление. Пропущенный свет может быть отражен от других поверхностей.

Падающий на поверхность свет можно условно разделить на направленный и рассеянный. Направленным является свет солнца или некоторого другого точечного источника. Рассеянный свет возникает в результате дифракции некоторого направленного света на мелких оптических неоднородностях окружающей среды (например, воздуха) из-за флуктуации плотности (небольших отклонений плотности от ее среднего значения в пределах малых объемов). Рассеянный свет характеризуется равномерным распределением его интенсивности по всем направлениям. В отсутствие рассеянного света предметы выглядят контрастными. Так выглядят предметы, помещенные в темную комнату и освещенные направленным на них прожектором. При отсутствии воздуха части предметов, находящиеся в тени, могут быть совсем не видны. В большинстве реальных ситуаций рассеянный свет присутствует.

Приходящий в точку наблюдения свет разделим на четыре составляющие части:

• рассеянный свет,

• диффузно отраженный свет,

• зеркально отраженный свет,

• пропущенный свет.

Рассеянный свет.

Рассеянный свет, как и направленный, подвержен диффузному и зеркальному отражению, но в силу одинаковой интенсивности во всех направлениях в точку наблюдения от каждой точки поверхности приходит одинаковое количество рассеянного света. Обозначим через 1а интенсивность рассеянного света. При наличии только рассеянного света в точку наблюдения от каждой точки объекта независимо от ориентации в ней поверхности придет свет интенсивности

(9.8.1)

где — коэффициент, определяющий отраженную долю рассеянного света.

Диффузно отраженный свет.

Матовая поверхность большую часть падающего света отражает диффузно. Для диффузного отражения справедлив закон косинусов Ламберта, устанавливающий соответствие между количеством отраженного света и косинусом угла в между направлением на точечный источник света интенсивности и нормалью к поверхности. Интенсивность диффузно отраженного света определяется формулой

(9.8.2)

где — коэффициент диффузного отражения, зависящий от материала поверхности. Количество диффузно отраженного света не зависит от положения наблюдателя. Матовые поверхности отражают одинаковое количество световой энергии во всех направлениях, но это количество пропорционально .

Зеркально отраженный свет.

Зеркальные поверхности отражают свет неодинаково по разным направлениям. Вследствие этого на гладких криволинейных поверхностях можно наблюдать световой блик. От зеркальной поверхности большая часть падающего света отражается в направлении, угол с нормалью которого равен углу падения и лежащем в одной плоскости с падающим светом и нормалью в точке падения.

Это направление называется направлением отраженного света (рис. 9.8.1). При отклонении на некоторый угол а от этого направления интенсивность отраженного света резко уменьшается. Изменение интенсивности зеркально отраженного света около направления отраженного света Фонг предложил описывать функцией , где может зависеть от свойств поверхности и лежит в диапазоне от 1 до 200.

Рис. 9.8.1. Зеркальное отражение света

Количество отраженного света зависит также и от угла падения . При моделировании света зависимость отраженного света от угла падения заменяют константой которую выбирают опытным путем так, чтобы результаты были приемлемы с эстетической точки зрения. Если интенсивность источника света равна то интенсивность зеркально отраженного света определим формулой Фонга

(9.8.3)

где будем называть коэффициентом зеркального отражения, а будем называть коэффициентом блеска. Чем больше , тем ярче и уже световой блик.

Пропущенный свет.

Если отображаемый объект является прозрачным, то от точки его поверхности в точку наблюдения придет не только отраженный свет, но и свет, пропущенный поверхностью из глубины объекта. Пропущенный поверхностью свет может прийти в результате отражения от другой поверхности или от источника света через прозрачный объект. В обоих случаях свет пойдет через вещество и будет им частично поглощен. Интенсивность света при прохождении через вещество убывает по экспоненциальному закону и описывается законом Бугера

где — интенсивность света на входе в поглощающее вещество, I — пройденное расстояние, коэффициент поглощения света данным веществом. При интенсивность пропущенного света уменьшается в раз. Это равенство можно рассматривать, как определение коэффициента поглощения. Интенсивность является одной из составляющих частей падающего света. Поверхность как граница двух сред характеризуется коэффициентом отражения и коэффициентом пропускания . Если пренебречь поглощением света, то интенсивность отраженного и пропущенного света в сумме должны давать интенсивность падающего света

(9.8.5)

Как было упомянуто выше, пропущенный свет условно делят на диффузно пропущенный и направленно пропущенный. Для простоты будем считать, что доля диффузно пропущенного света мала по сравнению с долей направленно пропущенного света, и опустим из рассмотрения диффузно пропущенный свет.

Направленно пропущенный свет претерпевает преломление на поверхности раздела двух сред. Преломленный луч лежит в одной плоскости с падающим лучом и нормалью в точке падения (рис. 9.8.2).

Рис. 9.8.2. Преломление света

Его направление составляет угол в с нормалью и описывается законом преломления

(9.8.6)

где — показатель преломления среды со стороны падающего света, — показатель преломления среды с другой стороны поверхности раздела. Для интенсивности направленно пропущенного света примем закон изменения от направления аналогичный закону (9.8.3) для направленно отраженного света

(9.8.7)

где — угол отклонения направления пропущенного света от направления в точку наблюдения.

Пришедший к наблюдателю пропущенный свет проходит четное число границ сред и претерпевает столько же раз преломление.

Интенсивность наблюдаемого света.

Реальные поверхности обладают свойствами и диффузного и зеркального отражения, а также могут быть частично прозрачными. В реальных ситуациях присутствует и направленный и рассеянный свет. Рассмотрим вычисление интенсивности света, пришедшего в то точку наблюдения, от непрозрачной поверхности. Она определится суммой трех составляющих

(9.8.8)

Результаты закраски, полученные с помощью формулы (9.8.8), обладают большой реалистичностью, но они имеют существенный недостаток. Если две плоские поверхности одного цвета параллельны друг другу и их проекции перекрываются, то поверхности будут закрашены одинаково и их изображения сольются независимо от их расстояния до точки наблюдения. Для устранения этого эффекта интенсивность пришедшего от поверхности света будем считать зависимой от расстояния и запишем формулу вычисления интенсивности света в виде

(9.8.9)

где — расстояние от точки наблюдения до точки поверхности, — расстояние от точки наблюдения до ближайшей точки объекта, — коэффициент влияния удаленности точки объекта на интенсивность пришедшего от нее света.

При мы получим формулу (9.8.8). Интенсивность света от ближайшей точки также будет совпадать с (9.8.8). Расстояние введено из-за того, что для параллельных проекций точка наблюдения находится на бесконечности. Для центральных проекций можно положить тогда при удалении всего объекта от точки наблюдения будет наблюдаться уменьшение его яркости.

Формулу (9.8.9) стоит рассматривать как эмпирическую формулу, приемлемую с эстетической точки зрения и достаточно простую. В некоторых случаях вместо этой формулы используется формула

Она также позволяет получать достаточно реалистичные изображения.

Рис. 9.8.3

Рассмотрим вычисление интенсивности света, пришедшего в точку наблюдения, от прозрачного объекта, показанного на рис. 9.8.3. Для построения реалистических изображений интенсивность пришедшего от некоторой точки объекта света опишем формулой

(9.8.11)

Последнее слагаемое получено следующим образом. После прохождения лучом света интенсивности первой поверхности интенсивность пропущенного света равна по достижении второй поверхности его интенсивность будет равна наконец, после прохождения второй поверхности его интенсивность станет равной . Свет интенсивности может прийти от другого источника или может являться направленно отраженной частью света интенсивности но отраженной от некоторой другой поверхности.

При наличии нескольких источников света каждый из них даст свой вклад в интенсивность пришедшего в точку наблюдения света. Для нескольких источников света, с интенсивностью каждого , формула (9.8.9) примет вид

(9.8.12)

Аналогичным образом изменится формула (9.8.11) вычисления интенсивности света, пришедшего от прозрачной поверхности. Она примет вид

где — интенсивность пропущенного луча света (проникающего с другой стороны поверхности).

Торрэнс и Спэрроу создали теоретически обоснованную модель отражающей поверхности. В этой модели предполагается, что поверхность представляет собой совокупность микроскопических идеально отражающих плоскостей. Ориентация граней задается функцией распределения вероятностей Гаусса. Свойства микроскопических плоскостей и их ориентация относительно направления падающего света определяют распределение интенсивности отраженного света по различным направлениям. Модель Торрэнса и Спэрроу хорошо согласуется с опытами, но является более сложной, чем рассмотренная выше модель.

<< Предыдущий параграф Следующий параграф >>
Оглавление