Главная > Математика > Геометрическое моделирование
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 8. ВЫЧИСЛЕНИЕ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК

8.1. Возможности геометрической модели

Результатом геометрического моделирования некоторого объекта является математическая модель его геометрии. Математическая модель позволяет графически отобразить моделируемый объект, получить его геометрические характеристики, выполнить исследование многих физических свойств объекта путем постановки численных экспериментов, подготовить производство и, наконец, изготовить объект.

Для того чтобы увидеть, как выглядит объект, нужно смоделировать поток падающих и возвращающихся от его поверхностей лучей света. При этом граням модели можно придать необходимый цвет, прозрачность, фактуру и другие физические свойства. Модель можно осветить с разных сторон светом различного цвета и интенсивности.

Геометрическая модель позволяет определить массово-центровочные и инерционные характеристики проектируемого объекта, выполнить измерения длин и углов его элементов. Она дает возможность произвести расчет размерных цепей и определить собираемость проектируемого объекта. Если объект представляет собой механизм, то на модели можно проверить его работоспособность и выполнить расчет кинематических характеристик.

Используя геометрическую модель, можно поставить численный эксперимент по определению напряженно-деформированного состояния, частот и форм собственных колебаний, устойчивости элементов конструкции, тепловых, оптических и других свойств объекта. Для этого нужно дополнить геометрическую модель физическими свойствами, смоделировать внешние условия ее работы и, используя физические законы, выполнить соответствующий расчет.

По геометрической модели можно вычислить траекторию режущего инструмента для механической обработки объекта. При выбранной технологии изготовления объекта геометрическая модель позволяет спроектировать оснастку и выполнить подготовку производства, а также проверить саму возможность изготовления объекта данным способом и качество этого изготовления. Кроме того, возможна графическая имитация процесса изготовления. Но для того, чтобы изготовить объект, кроме геометрической информации нужна информация о технологическом процессе, производственном оборудовании и многом другом, связанном с производством.

Многие из перечисленных проблем образуют самостоятельные разделы прикладной науки и по своей сложности не уступают, а в большинстве случаев и превосходят проблему создания геометрической модели. Геометрическая модель является отправной точкой для дальнейших действий. При построении геометрической модели мы не использовали физические законы, радиус-вектор каждой точки границы раздела внешней и внутренней частей моделируемого объекта является известным, поэтому при построении геометрической модели нам приходится составлять и решать алгебраические уравнения.

Задачи, в которых используются физические законы, приводят к дифференциальным и интегральным уравнениям, решение которых сложнее решения алгебраических уравнений.

В данной главе остановимся на выполнении расчетов, не связанных с физическими процессами. Мы рассмотрим вычисление чисто геометрических характеристик тел и их плоских сечений: площади поверхности, объема, центра масс, моментов инерции и ориентации главных осей инерции. Эти расчеты не требуют привлечения дополнительной информации. Кроме этого, мы рассмотрим проблемы численного интегрирования, которые приходится решать при определении геометрических характеристик.

Определение площади, центра масс и моментов инерции плоского сечения тела приводит к вычислению интегралов по площади сечения. Для плоских сечений мы располагаем информацией об их границах. Интегралы по площади плоского сечения мы сведем к криволинейным интегралам, которые в свою очередь сводятся к определенным интегралам. Определение площади поверхности, объема, центра масс, моментов инерции тела приводит к вычислению поверхностных и объемных интегралов. Мы будем опираться на представление тела с помощью границ , т. е. на описание тела совокупностью ограничивающих его поверхностей и топологическую информацию о взаимном соседстве этих поверхностей. Мы сведем интегралы по объему тела к поверхностным интегралам по поверхностям граней тела, которые в свою очередь сводятся к двойным интегралам. В общем случае область интегрирования представляет собой связную двухмерную область. Вычисление двойных интегралов численными методами можно выполнить для областей простых типов — четырехугольной или треугольной формы. В связи с этим в конце главы рассмотрены методы вычисления определенных интегралов и двойных интегралов по четырехугольным и треугольным областям. Методы разбивки областей определения параметров поверхностей на совокупности треугольных подобластей рассмотрены в следующей главе.

В начале главы рассмотрим сведение интегралов по площади к криволинейным интегралам и сведение объемных интегралов к поверхностным интегралам. На этом будут базироваться вычисления геометрических характеристик моделей.

<< Предыдущий параграф Следующий параграф >>
Оглавление