ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Факторный анализ (Иберла К.)
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

4.2. СПОСОБЫ ВЫЧИСЛЕНИЯ ОЦЕНОК ОБЩНОСТЕЙ

Разработано много способов предварительных оценок общностей. Один Тэрстоун [286; 6] предложил 12 различных способов. Но никто пока не дал исчерпывающего теоретического их обоснования. На практике выбор происходит в зависимости от имеющейся в распоряжении машинной программы и от личных склонностей исследователя. При такой неблагоприятной ситуации счастливым обстоятельством является тот факт, что при большом числе переменных неточные оценки общностей большей частью не оказывают сильного влияния на финальное факторное решение. Далее указываются три важных способа и обсуждаются их свойства, так что читатель сможет при конкретных исследованиях выбрать наиболее подходящий из них. Для полноты представления проблемы коротко упоминаются несколько других способов оценок. К сожалению, имеется пока мало работ, посвященных сравнению точности полученных оценок различными способами, хотя такие исследования относительно легко провести путем моделирования на ЭВМ.

4.2.1. Способ наибольшей корреляций

Хорошо зарекомендовал себя способ предварительной оценки общности, заключающийся в выборе наибольшего коэффициента корреляции данной переменной с остальными переменными. На главной диагонали записывается с положительным знаком наибольший коэффициент корреляции данного столбца матрицы R, независимо от его исходного алгебраического знака. Никаких дополнительных вычислений при этом не требуется. Тэрстоун и его последователи часто пользовались этим простым способом, особенно в соединении с центроидным методом. Этот способ оценки общностей уверенно можно рекомендовать при большом числе переменных. Благодаря своей простоте он наиболее распространен. Теоретически этот способ не обоснован. Наибольший коэффициент корреляции в столбце матрицы R не имеет непосредственной связи с общностью. Коэффициент корреляции является случайной величиной и каждое его возможное значение зависит от случайных обстоятельств. Использование его наибольшего значения в качестве общности дает лишь предварительную довольно грубую оценку, которая может оказаться как меньше, так и больше истинного значения общности. Этот способ рекомендуется использовать в случае отсутствия ЭВМ и при большом числе переменных порядка 10—20. Тогда способ дает результаты, незначительно отличающиеся от полученных более точными методами.

<< Предыдущий параграф Следующий параграф >>
Оглавление