ЕГЭ и ОГЭ
Живые анекдоты
Главная > Математика > Факторный анализ (Иберла К.)
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Линейная зависимость и ранг матрицы.

Система векторов одного и того же порядка называется линейно-зависимой, если из этих векторов путем соответствующей линейной комбинации можно получить нулевой вектор. (При этом не допускается, чтобы все коэффициенты линейной комбинации были равны нулю, так как это было бы тривиально.) В противном случае векторы называются линейно-независимыми. Например, следующие три вектора:

линейно зависимы, так как что легко проверить. В случае линейной зависимости любой вектор можно всегда выразить через линейную комбинацию остальных векторов. В нашем примере: или или Это легко проверить соответствующими расчетами. Отсюда вытекает следующее определение: вектор линейно независим от других векторов, если его нельзя представить в виде линейной комбинации из этих векторов.

Рассмотрим систему векторов, не уточняя, является ли она линейнозависимой или линейно-независимой. У каждой системы, состоящей из вектор-столбцов а, можно выявить максимально возможное число линейно-независимых векторов. Это число, обозначаемое буквой , и является рангом данной системы векторов. Так как каждую матрицу можно рассматривать как систему вектор-столбцов, ранг матрицы определяется как максимальное число содержащихся в ней линейнонезависимых вектор-столбцов. Для определения ранга матрицы пользуются и вектор-строками. Оба способа дают одинаковый результат для одной и той же матрицы, причем не может превосходить наименьшее из или Ранг квадратной матрицы порядка колеблется от 0 до . Если все векторы являются нулевыми, то ранг такой матрицы равен нулю. Если все векторы линейно независимы друг от друга, то ранг матрицы равен . Если образовать матрицу из приведенных выше векторов то ранг этой матрицы равен 2. Так как каждые два вектора могут быть сведены к третьему путем линейной комбинации, то ранг меньше 3.

Но можно убедиться, что любые два вектора из них являются-линейно-независимыми, следовательно, ранг

Квадратную матрицу называют вырожденной, если ее вектор-столбцы или вектор-строки линейно зависимы. Определитель такой матрицы равен нулю и обратной ей матрицы не существует, как уже было отмечено выше. Эти выводы эквивалентны друг другу. Вследствие этого квадратную матрицу называют невырожденной, или неособенной, если ее вектор-столбцы или вектор-строки независимы друг от друга. Определитель такой матрицы не равен нулю и обратная ей матрица существует (сравни со с. 43)

Ранг матрицы имеет вполне очевидную геометрическую интерпретацию. Если ранг матрицы равен , то говорят, что -мерное пространство натянуто на векторов. Если ранг то векторов лежат в -мерном подпространстве, которое всех их включает в себя. Итак, ранг матрицы соответствует минимально необходимой размерности пространства, «в котором содержатся все векторы», -мерное подпространство в -мерном пространстве называют -мерной гиперплоскостью. Ранг матрицы соответствует наименьшей размерности гиперплоскости, в которой еще лежат все векторы.

Ортогональность. Два вектора а и b называются взаимно-ортогональными, если их скалярное произведение равно нулю. Если для матрицы порядка имеет место равенство где D — диагональная матрица, то вектор-столбцы матрицы А попарно взаимно-ортогональны. Если эти вектор-столбцы пронормировать, т. е. привести к длине, равной 1, то имеет место равенство и говорят об ортонормированных векторах. Если В — квадратная матрица и имеет место равенство то матрицу В называют ортогональной. В этом случае из формулы (1.22) следует, что Ортогональная матрица всегда невырожденная. Отсюда из ортогональности матрицы следует линейная независимость ее вектор-строк или вектор-столбцов. Обратное утверждение неверно: из линейной независимости системы векторов не следует попарная ортогональность этих векторов.

<< Предыдущий параграф Следующий параграф >>
Оглавление