Линейная зависимость и ранг матрицы.
Система векторов одного и того же порядка называется линейно-зависимой, если из этих векторов путем соответствующей линейной комбинации можно получить нулевой вектор. (При этом не допускается, чтобы все коэффициенты линейной комбинации были равны нулю, так как это было бы тривиально.) В противном случае векторы называются линейно-независимыми. Например, следующие три вектора:

линейно зависимы, так как
что легко проверить. В случае линейной зависимости любой вектор можно всегда выразить через линейную комбинацию остальных векторов. В нашем примере:
или
или
Это легко проверить соответствующими расчетами. Отсюда вытекает следующее определение: вектор линейно независим от других векторов, если его нельзя представить в виде линейной комбинации из этих векторов.
Рассмотрим систему векторов, не уточняя, является ли она линейнозависимой или линейно-независимой. У каждой системы, состоящей из
вектор-столбцов а, можно выявить максимально возможное число линейно-независимых векторов. Это число, обозначаемое буквой
, и является рангом данной системы векторов. Так как каждую матрицу можно рассматривать как систему вектор-столбцов, ранг матрицы определяется как максимальное число содержащихся в ней линейнонезависимых вектор-столбцов. Для определения ранга матрицы пользуются и вектор-строками. Оба способа дают одинаковый результат для одной и той же матрицы, причем
не может превосходить наименьшее из
или
Ранг
квадратной матрицы порядка
колеблется от 0 до
. Если все векторы являются нулевыми, то ранг такой матрицы равен нулю. Если все векторы линейно независимы друг от друга, то ранг матрицы равен . Если образовать матрицу из приведенных выше векторов
то ранг этой матрицы равен 2. Так как каждые два вектора могут быть сведены к третьему путем линейной комбинации, то ранг меньше 3.
Но можно убедиться, что любые два вектора из них являются-линейно-независимыми, следовательно, ранг 
Квадратную матрицу называют вырожденной, если ее вектор-столбцы или вектор-строки линейно зависимы. Определитель такой матрицы равен нулю и обратной ей матрицы не существует, как уже было отмечено выше. Эти выводы эквивалентны друг другу. Вследствие этого квадратную матрицу называют невырожденной, или неособенной, если ее вектор-столбцы или вектор-строки независимы друг от друга. Определитель такой матрицы не равен нулю и обратная ей матрица существует (сравни со с. 43)
Ранг матрицы имеет вполне очевидную геометрическую интерпретацию. Если ранг матрицы равен
, то говорят, что
-мерное пространство натянуто на
векторов. Если ранг
то
векторов лежат в
-мерном подпространстве, которое всех их включает в себя. Итак, ранг матрицы соответствует минимально необходимой размерности пространства, «в котором содержатся все векторы»,
-мерное подпространство в
-мерном пространстве называют
-мерной гиперплоскостью. Ранг матрицы соответствует наименьшей размерности гиперплоскости, в которой еще лежат все векторы.
Ортогональность. Два вектора а и b называются взаимно-ортогональными, если их скалярное произведение равно нулю. Если для матрицы порядка
имеет место равенство
где D — диагональная матрица, то вектор-столбцы матрицы А попарно взаимно-ортогональны. Если эти вектор-столбцы пронормировать, т. е. привести к длине, равной 1, то имеет место равенство
и говорят об ортонормированных векторах. Если В — квадратная матрица и имеет место равенство
то матрицу В называют ортогональной. В этом случае из формулы (1.22) следует, что
Ортогональная матрица всегда невырожденная. Отсюда из ортогональности матрицы следует линейная независимость ее вектор-строк или вектор-столбцов. Обратное утверждение неверно: из линейной независимости системы векторов не следует попарная ортогональность этих векторов.