1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
Макеты страниц
в. МАТРИЦА КОРРЕЛЯЦИИ И МАТРИЦА ФАКТОРОВПознакомившись с понятиями факторной нагрузки и области совместных изменений, можно пойти дальше, снова привлекая для изложения аппарат матриц, элементами которых на этот раз будут коэффициенты корреляции. Матрица коэффициентов корреляции, полученных, как правило, экспериментальным путем, называется матрицей корреляции, или корреляционной матрицей. Элементы этой матрицы являются коэффициентами корреляции между всеми переменными данной совокупности. Если мы имеем, например, набор, состоящий из Эти коэффициенты заполняют половину матрицы, находящуюся по одну сторону ее главной диагонали. По другую сторону находятся, очевидно, те же коэффициенты, так как Схема 3.2. Полная матрица корреляции На диагонали этой матрицы находятся единицы, поскольку корреляция каждой переменной с самой собой равна +1. Матрица корреляции, у которой элементы главной диагонали равны 1, называется «полной матрицей» корреляции (схема 3.2) и обозначается Необходимо отметить, что, помещая на главной диагонали единицы, или корреляции каждой переменной с самой собой, мы учитываем полную дисперсию каждой переменной, представленной в матрице. Тем самым принимается во внимание влияние не только общих, но и специфичных факторов. Наоборот, если на главной диагонали корреляционной матрицы находятся элементы Матрица корреляции, в которой элементы главной диагонали соответствуют общностям, называется редуцированной и обозначается R (схема 3.3). Схема 3.3. Редуцированная матрица корреляции Выше уже говорилось о факторной нагрузке, или наполнении данной переменной конкретным фактором. При этом подчеркивалось, что факторная нагрузка имеет вид коэффициента корреляции между данной переменной и данным фактором. Матрица, столбцы которой состоят из нагрузок данного фактора применительно ко всем переменным данной совокупности, а строки — из факторных нагрузок данной переменной, называется матрицей факторов, или факторной матрицей. Здесь также можно говорить о полной и редуцированной факторной матрице. Элементы полной факторной матрицы соответствуют полной единичной дисперсии каждой переменной из данной совокупности. Если нагрузки на общие факторы обозначить через с, а нагрузки специфичных факторов — через и, то полную факторную матрицу можно представить в следующем виде: Схема 3.4. Полная факторная матрица Показанная здесь факторная матрица состоит из двух частей Первая часть содержит элементы, относящиеся к четырем переменным и трем общим факторам, причем предполагается, что все они относятся ко всем переменным. Это не есть необходимое условие, так как некоторые элементы первой части матрицы могут быть равными нулю, а это значит, что некоторые факторы относятся не ко всем переменным. Элементы первой части матрицы — это нагрузки общих факторов (например, элемент Во второй части матрицы мы видим 4 нагрузки характерных факторов, по одной в каждой строке, что соответствует их характерности. Каждый из этих факторов относится лишь к одной переменной. Все другие элементы этой части матрицы равны нулю. Характерные факторы можно, очевидно, разбить на специфичные и обусловленные ошибками. Столбец факторной матрицы характеризует фактор и его влияние на все переменные. Строка характеризует переменную и, ее наполненность различными факторами, иначе говоря, факторную структуру переменной. При анализе только первой части матрицы мы имеем дело с факторной матрицей, показывающей общую дисперсию каждой переменной. Эта часть матрицы называется редуцированной и обозначается F. Эта матрица не учитывает нагрузки характерных факторов и не принимает во внимание специфичной дисперсии. Напомним, что в соответствии со сказанным выше об общих дисперсиях и факторных нагрузках, представляющих собой квадратные корни из общих дисперсий, сумма квадратов элементов каждой строки редуцированной факторной матрицы F равна общности данной переменной Соответственно сумма квадратов всех элементов строки полной матрицы факторов равна Так как в факторном анализе основное внимание уделяется общим факторам, то мы в дальнейшем будем использовать главным образом редуцированную корреляционную и редуцированную факторную матрицу.
|
Оглавление
|