ЕГЭ и ОГЭ
Хочу знать
Главная > Методы обработки сигналов > Теоретические основы статистической радиотехники
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

21.2. БАЙЕСОВСКИЕ АЛГОРИТМЫ ОЦЕНИВАНИЯ СЛУЧАЙНОЙ АМПЛИТУДЫ КВАЗИДЕТЕРМИНИРОВАННОГО СИГНАЛА НА ФОНЕ АДДИТИВНОЙ ГАУССОВСКОЙ ПОМЕХИ

21.2.1. Постановка задачи и общее решение.

Предположим, что на интервале (0, Т) наблюдается реализация случайного процесса, представляющего смесь случайной помехи с квазидетерминированным сигналом амплитуда а которого случайна с известной плотностью распределения .

Необходимо, используя реализацию , синтезировать оптимальную по байесовскому критерию оценках амплитуды сигнала. В соответствии с (14.140) общее решение этой задачи представляет апостериорное среднее значение оцениваемой амплитуды сигнала, т.

(21.64)

где

(21.65)

Как указывалось в п. 14.6.3, условное среднее (21.64) является байесовской оценкой для любых четных функций потерь и для унимодальных, симметричных относительно моды апостериорных плотностей вероятности

Если помеха — аддитивная, центрированная, гауссовская с известной корреляционной функцией , то функционал отношения правдоподобия

(21.66)

где определяются по формулам (21.37 а, б).

21.2.2. Нормальное распределение амплитуды сигнала.

Предположим, что амплитуда а квазидетерминированного сигнала является гауссовской случайной величиной с известными средним значением и дисперсией Тогда Плотность вероятности амплитуды

(21.67)

Определим апостериорную плотность вероятности амплитуды, используя реализацию аддитивной смеси сигнала и гауссовской помехи. Из (21.65) — (21.67) следует

Вычисляя интеграл, заключенный в фигурных скобках, получаем после несложных преобразований

Из (21.68) следует, что в рассматриваемом случае апостериорная плотность вероятности описывается функцией нормальной плотности вероятности с параметрами: условное среднее значение

и условая дисперсия

Ясно, что функция плотности (21.68) унимодальна и симметрична относительна условного среднего Поэтому в рассматриваемом случае для любой» четной функции потерь искомая байесовская оценка амплитуды а квазидетерминированного сигнала [см. (21.69) и (21.36)]

где оценка максимального правдоподобия,

(21.72)

— отношение дисперсии априорного распределения амплитуды к дисперсии ее оценки максимального правдоподобия [см. (21.396)].

Из (21.71) следует, что байесовская оценка представляет среднее взвешенное двух величин: оценки максимального правдоподобия и априорного среднего причем отношение веса, приписываемого первой величине, к весу второй равно Ясно, что в рассматриваемом случае байесовская оценка распределенной по нормальному закону амплитуды сигнала совпадает с оценкой максимальной апостериорной плотности

Если отношение неограниченно возрастает, т. е. дисперсия оценки максимального правдоподобия много меньше дисперсии априорного распределения, то

(21.73 а)

т. е. байесовская оценка приближается к оценке максимального правдоподобия. Если дисперсия априорного распределения много меньше дисперсии оценки максимального правдоподобия, то

(21.73 б)

т. е. наблюдаемая реализация не влияет на оценку, которая принимается равной априорному среднему оцениваемого параметра.

Для белого гауссовского шума из (21.41 а) и (21.71) следует

(21.74)

В этом случае

(21.75)

т. е. равна отношению дисперсии априорного распределения к квадрату амплитуды сигнала, умноженному на отношение энергии сигнала к спектральной плотности белого шума.

Рассмотрим некоторые свойства байесовской оценки амплитуды квазидетерминированного слагаемого. Так как эта оценка получается линейной обработкой наблюдаемой реализации то распределение ее нормальное (как и оценки максимального правдоподобия).

Найдем среднее и дисперсию байесовской оценки , причем сначала получим условные средние и дисперсию при фиксированном а, а затем безусловные, усредняя по . Из (21.71) следует

и так как то усредняя по а, получаем

(21.76 а)

При дисперсия байесовской оценки также стремится к нулю, а при асимптотическое значение этой дисперсии равно

21.2.3. Асимптотические свойства байесовской оценки амплитуды сигнала с произвольным распределением.

Запишем выражение байесовской оценки амплитуды квазидетерминированного сигнала с произвольной плотностью при наблюдении реализации аддитивной смеси сигнала с гауссовской помехой. Из (21.64)-(21.66) находим

где

— решение интегрального уравнения

Дополняя экспоненты в подынтегральных выражениях до полных квадратов, после элементарных алгебр а ических преобразований находим из (21.77)

(21.78)

При значение неограниченно возрастает. Тогда

и из (21.78), предполагая непрерывность до и используя фильтрующее свойство дельта-функции, получаем асимптотическую формулу для байесовской? оценки амплитуды при

(21.79)

Независимо от вида априорного распределения байесовская оценка амплитуды а сходится при к оценке максимального правдоподобия.

Для белого гауссовского шума

т. е. указанная асимптотика имеет место при неограниченном увеличении отношения энергии сигнала на интервале наблюдения к спектральной плотности шума.

Асимптотические свойства байесовских оценок векторного случайного параметра квазидетерминированного сигнала для широких классов распределений помех и параметра, а также функции потерь исследованы в [61].

<< Предыдущий параграф Следующий параграф >>
Оглавление