1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
Макеты страниц
20.2. РАЗЛИЧЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ НА ФОНЕ АДДИТИВНОЙ ГАУССОВСКОЙ ПОМЕХИ20.2.1. Оптимальный дискретно-аналоговый алгоритм различения.Предположим, что передаваемые сигналы Из (20.11), учитывая (20.4), находим оптимальный по критерию максимума апостериорной вероятности дискретно-аналоговый алгоритм различения детерминированных сигналов на фоне аддитивной гауссовской помехи. Принимается решение о том, что передан сигнал
Обозначим величины, зависящие только от априорных данных, аналогично тому, как это сделано в п. 15.5.1:
и перепишем (20.15) более компактно:
Для равновероятных сигналов
Итак, рассмотренное оптимальное правило различения сигналов основано на формировании из векторной выборки
с последующим сравнением компонент Если Если после временной дискретизации наблюдаемой реализации получена независимая выборка, то корреляционная матрица
где Компоненты такой статистики представляют скалярные произведения сигнальных и выборочных векторов
Из (20.17) находим, что в рассматриваемом случае
Заметим, что каждая из статистик (20.19) аналогична достаточной статистике (15.25) при обнаружении детерминированного сигнала на фоне аддитивной коррелированной гауссовской помехи, а каждая из статистик (20.20) аналогична достаточной статистике (15.10) при обнаружении на фоне независимой гауссовской помехи. При этом параметры 20.2.2. Структурная схема оптимального дискретно-аналогового алгоритма различения.Учитывая отмеченную аналогию достаточных статистик в задачах обнаружения и различения сигналов на фоне аддитивной гауссовской помехи, нетрудно представить структурную схему оптимального алгоритма (20.18) (см. п. 15.1.5 и рис. 15.4). Как показано на рис. 20.2, устройство, реализующее алгоритм (20.18) состоит из набора
Когда на входы фильтров поступают выборочные значения, на их выходах в конце наблюдения формируются статистики (20.19). После вычитания констант Рис. 20.2. Схема алгоритма различения сигналов При независимой выборке
т. е. согласованный [с сигналом 20.2.3. Вероятность правильного решения.Примем за рабочую характеристику оптимального алгоритма различения сигналов |20.18) зависимость вероятности
где
После несложных преобразований находим из (20.26)
причем усреднение происходит по распределению гауссовской помехи. Используя (20.19), введем нормированные случайные величины
Если выборка
которые представляют нормированные билинейные формы сигнальных значений
с коэффициентами, являющимися элементами обратной корреляционной матрицы помехи. Функция распределения случайной величины
где
где Используя (20.28), (20.29) и (20.32), находим
Когда
где 20.2.4. Синтез оптимального дискретно-аналогового алгоритма различения сигналов при фильтровом способе дискретизации.В п. 20.2.1. при синтезе оптимального алгоритма использовалась мгновенная дискретизация реализации Оставим обозначение
Из (20.35) — (20.37) находим функцию правдоподобия выборки независимых координат при гипотезе
Используя (20.38) и повторяя рассуждения в той же последовательности, что и в п. 20.2.1, получаем следующее оптимальное по критерию максимальной апостериорной вероятности правило различения детерминированных сигналов на фоне аддитивной гауссовской помехи: принимается решение, что передан сигнал
где
При равновероятных сигналах и при оптимальный алгоритм различения (20.39) состоит в определении максимума (по индексу
Структурная схема алгоритма (20.30) не отличается от изображенной на рис. 20.2, но при иной интерпретации обозначений: х — выборка размером N, полученная фильтровым способом (см. рис. 15.6); Вероятность правильного решения при использовании алгоритма (20.39) для равновероятных сигналов и фиксированного значения Как уже отмечалось в п. 15.1.8, не следует отождествлять алгоритм для мгновенной дискретизации при независимой выборке с алгоритмом для фильтровой дискретизации при коррелированной выборке. Независимая выборка при мгновенной дискретизации отличается от выборки независимых координат, а детерминированные величины Соображения, приведенные в п. 15.1.9 при сопоставлении дискретно-аналоговых алгоритмов обнаружения сигналов, использующих различные способы дискретизации наблюдаемой реализации 20.2.5. Оптимальный аналоговый алгоритм различения сигналов.Как указано в п. 20.1.4, оптимальный по критерию максимума апостериорной вероятности аналоговый алгоритм различения сигналов формируется из (20.14) подставкой вместо логарифмов отношений правдоподобия логарифмов функционалов отношения правдоподобия. Полученное в п. 15.2.2 выражение для логарифма функционала отношения правдоподобия для случая различения двух детермированных сигналов на фоне аддитивной гауссовской помехи очевидным образом обобщается на случай произвольного числа сигналов. Для сигнала
где
Статистика (20.42) представляет линейный функционал гауссовского случайного процесса — случайную величину, распределенную по нормальному закону с параметрами
Регулярный случай имеет место, если величины, определяемые формулой (20.44), ограничены. Используя (20.2), получаем следующий оптимальный аналоговый алгоритм различения детерминированных сигналов на фоне аддитивной гауссовской помехи: принимается решение о том, что передан сигнал
где
Структура аналогового алгоритма (20.45) аналогична структурам дискретно-аналоговых алгоритмов (20.18) и (20.39). Весовые коэффициенты Указанная аналогия распространяется и на структурную схему аналогового алгоритма (20.45), которая получается из структурной схемы, изображенной на рис. 20.2, иной интерпретацией элементов этой схемы. Блок на входы которых поступает наблюдаемая реализация Константы Если сигналы равновероятны, а величины
т. e. блоки вычитания констант Вероятность правильного решения в этом случае определяется по формуле (20.33), в которой параметр
20.2.6. Различение детерминированных сигналов на фоне белого гауссовского шума.Корреляционная функция белого шума со спектральной плотностью
Подставляя (20.51) в (20.45), получаем оптимальный аналоговый алгоритм различения сигналов на фоне аддитивного белого гауссовского шума: принимается решение о том, что передан сигнал где
т. e. равен отношению энергии Для равновероятных сигналов одинаковой энергии
Корреляционный интеграл При использовании алгоритма (20.54) вероятность правильного решения вычисляется по формуле (20.33), где параметр
Для ортогональных сигналов Если Можно доказать (см., например, [44]), что временной коэффициент
При различении двух сигналов
|
Оглавление
|