ЕГЭ и ОГЭ
Хочу знать
Главная > Методы обработки сигналов > Теоретические основы статистической радиотехники
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава 5. ОСНОВНЫЕ МОДЕЛИ СЛУЧАЙНЫХ ПРОЦЕССОВ

5.1. КЛАССИФИКАЦИЯ ОСНОВНЫХ МОДЕЛЕЙ

5.1.1. Предварительное замечание.

Классификация случайных процессов по различным признакам рассматривалась в гл. 4. Наиболее общим является разделение случайных процессов на два класса: с непрерывным временем и с дискретным. Из этих классов случайных процессов, в общем нестационарных, можно выделить подклассы процессов, стационарных в широком смысле, стационарных в узком смысле, эргодических, с сильным перемешиванием (см. § 4.2). Другими признаками классификации были энергетические характеристики случайных процессов и связанного с ними свойства непрерывности и дифференцируемости (в среднеквадратическом, см. § 4.4, 4.5).

Каждый из указанных классов и подклассов представляет множество случайных процессов, управляемых различными распределениями вероятностей. Например, два стационарных в широком смысле случайных процесса, подчиняющихся двум совершенно различным двумерным функциям распределения и отображающих различные по физической природе явления, могут иметь совпадающие корреляционные функции или спектральные плотности мощности.

Полное вероятностное описание случайного процесса, которое назовем моделью случайного процесса, определяется последовательностью конечномерных функций распределения.

В этой главе рассматриваем несколько основных моделей случайных процессов, используемых при решении практических задач. Как отмечалось (см. п. 4.1.3), последовательность функций распределения по мере возрастания числа все более полно характеризует случайный процесс, причем функция содержит информацию о всех функциях распределения порядка но, вообще говоря, не наоборот. Однако вопреки этому общему положению существуют некоторые специальные виды случайных процессов, для которых одномерная и/или двумерная функции распределения позволяют определить последовательность функций сколь угодно большого порядка.

Этим замечательным свойством обладают случайные процессы, модели которых более подробно исследуются далее.

5.1.2. Детерминированный процесс.

Если множество реализаций процесса состоит из одной реализации, появляющейся с вероятностью единица, то такой процесс называют детерминированным. Полное и единственное описание детерминированного процесса представляется заданной функцией времени t.

Этот процесс можно рассматривать как вырожденный случайный процесс, функция распределения которого — единичный скачок при т. е.

[см. (2.7)]. Ясно, что среднее значение детерминированного процесса равно , а дисперсия равна нулю.

Заметим, что сумма стационарного случайного процесса и детерминированного процесса является процессом нестационарным, так как Однако эта нестациоиарность проявляется только в изменяющемся во времени среднем значении процесса и может быть при необходимости исключена на некоторых этапах решения задачи путем центрирования.

5.1.3. Квазидетерминированные случайные процессы.

Квазидетерминированный процесс представляется совокупностью функций времени заданного вида зависящих от случайного параметра Ф (вообще говоря, векторного), принимающего значения из подмножества 0 евклидового пространства параметров. Каждому возможному значению случайной величины соответствует одна реализация квазидстерминированного пропроцесса.

Простейшим примером квазидетерминированного процесса является гармонический сигнал со случайными амплитудами, частотой и фазой (см. п. 4.2.3 и 4.2.7). При равномерно распределенной фазе и постоянной частоте этот сигнал стационарен в узком смысле, а при тех же условиях и при постоянной амплитуде — эргодичеокий (см. также задачу 5.1). Другим примером квазидетерминированного процесса служит случайный процесс (4.120), который при определенных условиях, сформулированных в п. 4.4.3, стационарен в широком смысле и характеризуется дискретным спектром средней мощности.

Нестационарным квазидетерминированным процессом является процесс, описываемый полиномом по переменной t со случайными коэффициентами

который используется в качестве математической модели траектории полетов летательных аппаратов.

Квазидетерминированными являются также импульсные случайные процессы — последовательность импульсов заданной формы, параметры которых амплитуда, длительность, момент возникновения являются случайными величинами (см. § 5.5).

Докажем, что конечномерное распределение любого порядка квазидетерминированного процесса полностью определяется его одномерным распределением. Пусть стало известно значение процесса в момент времени , где — скалярный случайный параметр.

Обозначая через функцию, обратную относительно параметра , получаем . Тогда в любой момент значение процесса

По правилу умножения находим выражение многомерной плотности вероятности квазидетерминированного процесса

где - одномерная плотность вероятности квазидетерминированного процесса, которая, как нетрудно убедиться, связана с плотностью вероятности случайного параметра соотношением

Приведенное доказательство можно распространить и на квазидетерминированный процесс, зависящий от векторного параметра.

5.1.4. Случайные процессы с независимыми значениями.

Еще одним классом случайных процессов, для которого вся вероятностная информация содержится в одномерном распределении, являются процессы с независимыми значениями в несовпадающие моменты времени. Для любой последовательности случайные величины независимы в совокупности. Поэтому многомерная функция распределения случайного процесса с независимыми значениями факторизуется, т. е. равна произведению одномерных функций распределения в заданные моменты времени

Из (5.3) следуют также аналогичные соотношения для многомерных плотностей вероятности и характеристических функций случайных процессов с независимыми значениями

Следует отличать процессы с независимыми значениями от процессов с некоррелированными значениями, у которых для любой пары несовпадающих моментов времени

Если одномерная функция распределения не зависит от времени, то процесс с независимыми значениями представляет случайную последовательность независимых одинаково распределенных случайных величин. Эта последовательность эргодична (и, следовательно, стационарна в узком смысле).

5.1.5. Случайные процессы с независимыми приращениями.

Процесс называют случайными с независимыми приращениями, если для любой последовательности моментов времени случайные величины независимы. Любое конечномерное распределение процесса с независимыми приращениями определяется его одномерным распределением и распределением приращения, т. е. двумерным распределением. Более подробная характеристика указанного класса случайных процессов дана в § 5.3.

Следует отличать процессы с независимыми приращениями от процессов с некоррелированными приращениями, для которых приращения процесса на непересекающихся интервалах некоррелированы.

5.1.6. Марковские случайные процессы.

Еще одной моделью случайного процесса, полное вероятностное описание которого дается распределением второго порядка, является марковский случайный процесс. Эта модель широко используется в приложениях теории случайных процессов.

Марковский процесс — процесс без последействия, что аналитически выражается следующим соотношением между условными функциями распределения случайного процесса:

Вводя обозначения условных функций распределения, перепишем (5.6) в виде

Соотношение (5.6) означает, что будущее состояние и прошлые состояния марковского процесса при фиксированном настоящем состоянии независимы. Иными словами, будущие состояния связаны с прошлым только через фиксированное в данный момент времени состояние, в котором оказывается «закодировано» все прошлое марковского процесса. Более подробная характеристика марковских процессов дана в § 5.4.

Следует отличать марковский процесс от мартингала, для которого при

<< Предыдущий параграф Следующий параграф >>
Оглавление