ЕГЭ и ОГЭ
Хочу знать
Главная > Методы обработки сигналов > Теоретические основы статистической радиотехники
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

5.6. ЗАДАЧИ

5.1. Доказать строгую стационарность квазидетерминированного процесса

при условии, что случайные величины взаимно независимы, причем распределена равномерно на интервале . Проварить, что

где характеристическая функция случайной величины

Доказать, что при постоянных процесс эргодический, (причем

5.2. Доказать, что двумерная плотность вероятности и двумерная характеристическая функция гармонического колебания постоянной амплитуды и частоты с равномерно распределенной фазой равны

— функция Беоселя порядка от мнимого аргумента,

5.3. Показать, что одномерная характеристическая функция квазидетерминированного стационарного процесса где — постоянная, Ф (распределена равномерно на интервале , а распределение а равна имеет вод

где функция Бесселя нулевого порядка.

Указание. Представить одномерную плотность вероятности в виде

и использовать результат задачи 3.8.

5.4. Замечая, что в условиях задачи 5.3 одномерное распределение всегда симметрично (поскольку ) — действительная и четная функция), установить следующую связь между моментами четного порядка и амплитуды а:

Если то показать, что

[см. (3.76)].

5.5. Доказать справедливость следующего соотношения для гауссовского случайного процесса:

Обобщить формулу (10) на гауссовский случайный процесс с нулевым средним

где суммирование ведется по воем различным способам, по каким можно разделить моментов времени на пар.

Указание. Использовать связь моменгшьгх функций гауссовского процесса с его многомерной характеристической функцией.

5.6. Рассмотреть случайный телеграфный сигнал реализациями которого являются «прямоугольные волны» (рис. 5.6), принимающие два значения h и —h. Пусть число перемен знака полярности сигнала на интервале (0, t) представляет пуассоновский процесс, подчиняющийся распределению (5.45). Доказать, что корреляционная функция телеграфного сигнала при указанных предположениях

где — интенсивность луаошновского процесса.

Показать, что для однородного пуассоновского потока случайных моментов перемен знака телеграфного сигнала с интенсивностью корреляционная функция и спектральная плотность мощности сигнала

Убедиться, что стационарный в широком смысле случайный телеграфный сигнал непрерывен в среднеквадратическом (хотя каждая его реализация имеет бесконечное число точек разрыва). Убедиться также, что этот сигнал, однако, не дифференцируем в среднеквадратическом,

5.7. Доказать, что среднее число и средняя длительность выбросов над уровнем эргодического центрированного гауссовского процесса равны

где дисперсия процесса, интеграл Лапласа и определяется (по формуле (4.145).

5.8. Рассмотреть последовательность равноотстоящих на интервалах Т прямоугольных импульсов длительностью То со случайными независимыми одинаково распределенными амплитудами (рис. 5.7). Средние значения и дисперсии амплитуд импульсов равны а и соответственно.

Рис. 5.6. Случайный телеграфный сигнал

Доказать, что непрерывная и дискретная части спектра рассматриваемого импульсного случайного процесса с детерминированным тактовым интервалом (рис. 5.8)

Доказать также, что корреляционная функция рассматриваемого импульсного случайного процесса (рис. 5.9)

где

5.9. Рассмотреть последовательность прямоугольных импульсов с одинаковыми амплитудами а, длительностью то, но со случайным моментом появления внутри заданного тактового интервала длительностью Т (рис. 5.10). Моменты появления различных импульсов независимы, распределены одинаково, причем известна характеристическая функция случайного смещения v середины импульса относительно начала тактового интервала.

Рис. 5.7. Импульсный случайный процесс (случайные амплитуды импульсов)

Рис. 5.8. Спектральная плотность мощности процесса, представленного на рис. 5.7

Рис. 5.9. Корреляционная функция процесса, представленного на рис. 5.7

Рис. 5.10. Импульсный случайный процесс (случайное время появления импульса)

Вывести следующее выражение для спектра рассматриваемого импульсного случайного процесса с детерминированным тактовым интервалом

5.10. Рассмотреть последовательность прямоугольных импульсов постоянной амплитуды а и случайной длительности, которые появляются в начале каждого тактового интервала Т (рис. 5.11). Длительности импульсов независимы, распределены одинаково, причем известна характеристическая функция случайной длительности импульса. Доказать, что непрерывная и дискретная части спектра рассматриваемого импульсного случайного процесса с детерминированными тактовыми интервалами!

5.11. Рассмотреть клиппированный сигнал, представляющий апериодическую последовательность прямоугольных импульсов постоянной амплитуды а и случайной длительности, которые возникают в случайные моменты времени (рис. 5.12). Такой сигнал появляется на выходе идеального ограничителя, когда на его входе действует случайный процесс. Пусть случайные длительности импульсов и пауз между импульсами независимы и подчиняются одному и тому же закону распределения, а характеристическая функция, соответствующая этому закону.

Рис. 5.11. Импульсный случайный процесс (случайные длительности импульсов)

Рис. 5.12. Клиппированный сигнал

Доказать, что спектр такого клиппировашюш сигнала имеет следующий вид:

где то — среднее значение длительностей импульсов и пауз. Вычислить значение шектральной плотности при непрерывной части спектра (25) и убедиться, что

где дисперсия длительностей импульсов и пауз.

Рассмотреть экспоненциальное распределение длительностей импульсов и пауз, когда

и убедиться, что в этом случае непрерывная часть спектра (25) совпадает со спектрам случайного телеграфного сигнала [см. (14) задачи 5.6 при

5.12. Рассмотреть импульсный случайный процесс, реализациями которого являются пачки амплитудно-модулированных импульсов на детерминированных тактовых интервалах Т. Длительности импульсов и пауз между ними постоянны, а число импульсов в пачке случайно (рис. 5.13). Доказать, что непрерывная часть спектра рассматриваемого импульсного случайного процесса

где — среднее число импульсов в пачке и дисперсия амплитуды импульсов.

Выражение (26) отличается от непрерывной части энергетического спектра процесса, в котором на каждом детерминированном интервале проявляется только один амплитудно-смодулированный импульс, лишь множителем , равным среднему числу импульсов в пачке.

Доказать, что дискретная часть спектра рассматриваемого импульсного, случайного процесса

где а — среднее значение амплитуд импульсов и вероятность того, что в лачке окажется импульсов,

Рис. 5.13. Импульсный случайный процесс (случайные амплитуды и случайное число импульсов тактовом интервале)

Заметим, что в отличие от (26) дискретный спектр зависит от закона распределения случайного числа имттульсов в пачке, но не зависит от дисперсии амплитуд (т. е. от амплитудной модуляции импульсной последовательности)

<< Предыдущий параграф Следующий параграф >>
Оглавление