ЕГЭ и ОГЭ
Хочу знать
Главная > Методы обработки сигналов > Теоретические основы статистической радиотехники
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

6.2. ЛИНЕЙНЫЕ СИСТЕМЫ С ДИСКРЕТНЫМ ВРЕМЕНЕМ (ЦИФРОВЫЕ ФИЛЬТРЫ)

6.2.1. Характеристика «вход-выход».

Линейная (динамическая) система с дискретным временем характеризуется тем, что значение выходного сигнала получается суперпозицией (сложением) значений входного сигнала, умноженных на весовой коэффициент зависящий в общем случае и от момента воздействия сигнала и от момента наблюдения сигнала Таким образом, сигнал на выходе линейной системы с дискретным временем можно выразить через значения сигнала на входе в виде суммы

Функцию называют импульсной характеристикой линейной системы с дискретным временем, а сумму (-сверткой импульсной характеристики с входным сигналом. Для физически реализуемой линейной системы три . В этом случае из (6.10) следует

Если параметры линейной системы постоянны во времени она инвариантна), то ее импульсная характеристика зависит только от одного аргумента — разности . Для таких систем соотношение (6.10) преобразуется к виду

или с учетом физической реализуемости

Заменой индекса суммирования соотношения (6.12) и (6.13) преобразуются к виду

и соответственно, с учетом физической реализуемости,

Формулы (6.10) — (6.15) описывают характеристики «вход—выход» линейных динамических систем с дискретным временем. Заметим, что (6.15) совпадает с линейным членом разложения (6.8) характеристики «вход — выход» динамической системы общего вида.

6.2.2. Передаточная функция.

При анализе инвариантных линейных систем с дискретным временем вместо рассмотренных в. п. 6.2.1 соотношений между входным и выходным сигналами часто используют соотношения между -преобразованиями. Как известно, -преобразование функции целочисленного аргумента

где 2 — комплексная переменная, причем функция определена для тех значений z, при которых степенной ряд (6.16) сходится. Обратным -преобразованием является

(6.16а)

где с — замкнутый контур в области сходимости, охватывающий начало координат.

Основные свойства преобразования (6.16) аналогичны свойствам преобразований Фурье и Лапласа. В частности, -преобразование свертки двух функций целочисленного аргумента равно произведению -преобразований этих функций. Применяя это правило к (6.12) и обозначая через преобразования сигналов и импульсной характеристики получаем

Функция называется передаточной функцией инвариантной линейной системы с дискретным временем.

6.2.3. Характеристика «вход — выход» в форме разностного уравнения.

Полезной формой представления характеристик «вход — выход» некоторых инвариантных физически реализуемых линейных систем с дискретным временем (цифровых фильтров) являются линейные разностные уравнения с постоянными коэффициентами

причем

Если в (6.18) при по крайней мере, еще при одном значении i и при одном значении коэффициенты то цифровой фильтр называют рекурсивным. В этом случае выход зависит не только от «хода, но и от (предыдущих значений выхода. Если же в (6.18) то цифровой фильтр называют нерекурсивным. В этом случае выход представляет весовую сумму входных величин [27].

Совершая -преобразования над обеими частями уравнения (6.18) и учитывая, что -преобразование функции со смещенным аргументом равно получаем при нулевом начальном состоянии системы

Из (6.17) и (6.19) следует, что передаточная функция линейной системы, которая характеризуется уравнением (6.18),

Формула (6.20) при заданных коэффициентах а и служит основой для построения цифровых фильтров с минимальным числом сумматоров, усилителей и элементов задержки (см., например, [25]).

6.2.4. Характеристика «вход — состояние — выход».

Принимая текущие значения выходного сигнала за переменные состояния, можно заменить разностное уравнение (6.18) n-го порядка системой линейных разностных уравнений первого порядка, записанной в матричной форме (см., например, [16, 26], а также п. 6.3.5):

где — вектор-столбец состояний,

Общее решение уравнения (6.21)

где

Уравнение (6.21) представляет так называемое каноническое уравнение состояния линейной системы с дискретным временем. Это уравнение совместно с уравнением

где

представляет характеристику «вход — состояние — выход» [см. (6.3) и (6.4)].

<< Предыдущий параграф Следующий параграф >>
Оглавление