ЕГЭ и ОГЭ
Хочу знать
Главная > Разное > Фракталы и хаос в динамических системах. Основы теории
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3.2. Метрические пространства

До сих пор, говоря о расстоянии, мы всегда подразумевали евклидово расстояние. Так, расстояние между векторами мы определили как длину вектора а именно:

Но расстояния можно вычислять и по-другому, используя различные меры длины. Например, рассмотрим упрощенную карту города в виде прямоугольной сетки улиц с двусторонним движением. Тогда адекватной мерой длины может служить кратчайшее расстояние, которое нужно преодолеть, чтобы добраться от одного перекрестка до другого. Иногда такое расстояние называют манхэттенским.

Вместо того чтобы перечислять всевозможные меры длины, большинство из которых нам не понадобится, мы сейчас рассмотрим требования (аксиомы), которым должна удовлетворять произвольная мера длины. Все последующие теоремы о расстояниях будут доказаны в рамках этих аксиом, то есть в наиболее общем виде. В математике принято вместо выражения «мера длины» использовать термин метрика.

Метрика.

Метрикой на множестве X называется вещественная функция d(x, у), определенная на произведении х и удовлетворяющая следующим аксиомам:

б) влечет

г) для всех (неравенство треугольника).

Метрическим пространством называется пара Доказательство того, что евклидово расстояние удовлетворяет аксиомам (а), (б) и (в), тривиально. Неравенство треугольника:

мы доказали в п. 3.1 (теорема 3.1.2). Таким образом, евклидово расстояние является метрикой, которую мы в дальнейшем будем называть евклидовой метрикой.

Рассмотрим один важный класс метрик в пространстве а именно класс -метрик. -метрика является обобщением евклидовой метрики и совпадает с ней при . Для p-метрика определяется следующим образом:

Для

Мы оставим без доказательства следующий факт:

Доказательство того, что -метрика действительно является метрикой, т.е. удовлетворяет аксиомам мы также опускаем. Частично этот вопрос вынесен в упражнения.

Заметим, что в определении метрики мы не стали требовать, чтобы элементы х и у принадлежали пространству . Это дает нам возможность определить множество X, также как и его элементы х, у и т. д., многими разными способами. Наша задача состоит в том, чтобы указать при каких условиях фрактальное построение сходится. Для этого нужно уметь измерять расстояние между компактными множествами, то есть необходимо определить соответствующую метрику.

Теория множеств в метрических пространствах.

Нам предстоит сделать большой шаг вперед и распространить теоретикомножественные определения п. 3.1, подразумевавшие евклидову метрику, на произвольные метрики. Открытый шар в метрическом пространстве (X, d) определяется следующим образом:

С учетом (3.4), мы можем оставить без изменений данные выше определения следующих понятий:

Например, множество является открытым множеством тогда и только тогда, когда для любого можно указать открытый шар (в смысле определения (3.4)), который содержится в Е. В список вошли без изменений все определения, кроме понятия компактности. Строгое определение компактного множества в произвольном метрическом пространстве дается в прил. Так как нас в основном будет интересовать компактность подмножеств пространства то определение, данное выше (замкнутость и ограниченность), остается в силе.

Если — метрика на множестве X, а — взаимно однозначная вещественная функция, то

также есть метрика на X. Аксиомы (а) и (в), очевидно, выполнены. удовлетворяет аксиоме (б), так как — взаимно однозначная функция. Аксиома (г) запишется в виде неравенства:

то есть классического неравенства треугольника для вещественных чисел. Пример метрики, заданной таким образом:

Говорят, что две метрики, , определенные на множестве X, эквивалентны, если можно указать такие что:

Можно показать, что любые две -метрики в пространстве где эквивалентны (случай вынесен в упр. 3 в конце этого параграфа). С другой стороны, метрики на множестве R не эквивалентны (упр. 4 в конце этого параграфа).

По-видимому, основным следствием эквивалентности метрик для теории фракталов является тот факт, что фрактальная размерность (глава 5) сохраняется при замене метрики на эквивалентную. Более того, если множество открыто (замкнуто) в одной метрике, то оно открыто (замкнуто) и в любой эквивалентной метрике. Далее, если множество ограничено в одной метрике, то оно ограничено и в любой эквивалентной метрике. То же самое относится и к совершенным, связным и вполне разрывным множествам.

Сходимость.

Пусть — метрика на множестве X. Последовательность точек метрического пространства X сходится к пределу в метрике d, если последовательность чисел сходится к нулю в обычном смысле, то есть если:

Здесь эквивалентность метрик выражается в следующем. Если метрики эквивалентны, то в -метрике тогда и только тогда, когда в -метрике, так как:

Если то и наоборот.

Непрерывность.

В курсе математического анализа функция определенная на X, называется непрерывной в точке , если:

В евклидовом пространстве это означает, что:

для каждого существует такое число , что при выполняется неравенство

Это определение легко обобщается на функции, чья область определения есть метрическое пространство а область значений — другое метрическое пространство

для каждого существует такое число что при , выполняется неравенство

С использованием последовательностей, непрерывность можно определить так. Функция непрерывна в точке если:

в -метрике для любой последовательности сходящейся к в -метрике (упр. 8 в конце этого параграфа).

Говорят, что функция непрерывна на множестве А, если она непрерывна в каждой точке А. Свойства исходного множества А, которые при непрерывном отображении сохраняются без изменений у множества называются инвариантами непрерывности.

К таким свойствам относятся компактность и связность. В прил. А приведены доказательства этих фактов, а также некоторые другие важные результаты о непрерывных отображениях. Метрические характеристики, в частности, фрактальная размерность, инвариантами непрерывности не являются. В теории фракталов часто используют более сильные ограничения, чем непрерывность, например, требуют выполнения условия Липшица (п. 3.3).

<< Предыдущий параграф Следующий параграф >>
Оглавление