1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
Макеты страниц
Глава 1. Введение1.1. Что такое фракталы и хаос?Когда-то большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, коническое сечение, многоугольник, сфера, квадратичная поверхность, а также их комбинациями. К примеру, что может быть красивее утверждения о том, что планеты в нашей солнечной системе движутся вокруг солнца по эллиптическим орбитам? Этот замечательный закон — один из трех постулатов планетарного движения, сформулированных Иоганном Кеплером на основе наблюдений и измерений, сделанных Тихо Браге. Позднее, сэр Исаак Ньютон вывел закон обратных квадратов для гравитационного притяжения как решение некоторого дифференциального уравнения, причем законы Кеплера следовали из его решения. Как в этом, так и в других случаях, когда применение простых геометрических моделей оказалось удачным, это привело к огромным научным достижениям. Однако многие природные системы настолько сложны и нерегулярны, что использование только знакомых объектов классической геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических конфигураций, которое мы наблюдаем в мире растений и животных? Представьте себе всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела. Представьте, как хитроумно устроены легкие и почки, напоминающие по структуре деревья с ветвистой кроной. Столь же сложной и нерегулярной может быть и динамика реальных природных систем. Как подступиться к моделированию каскадных водопадов или турбулентных процессов, определяющих погоду? Какая математика отвечает за ритмы сердца и головного мозга, наблюдаемые на электрокардиограмме и энцефалограмме, в особенности за те внезапные приступы аритмии, которые могут вызвать сбой в работе сердца? Можно ли математически описать внезапное возникновение волны паники на финансовых рынках или даже построить математическую модель социального поведения? Фракталы и математический хаос — подходящие средства для исследования поставленных вопросов. Термин фрактал относится к некоторой статичной геометрической конфигурации, такой как мгновенный снимок водопада. Хаос — термин динамики, используемый для описания явлений, подобных турбулентному поведению погоды. Данная книга является введением в математику, которая стоит за этими понятиями. Предполагается, что после освоения изложенных здесь методов читатель сможет перейти к изучению приложений по специализированным источникам. Например, исследования показывают, что в физиологии встречается как «хороший» хаос, так и «плохой» [17, с. 273-300]. В опытах на кошках было замечено, что вид электрокардиограммы, снятой до и после введения кокаина, меняется с регулярной последовательности высоких пиков, сопровождаемых малыми пичками, на крайне нерегулярную последовательность, что, возможно, свидетельствует о приступе аритмии. С другой стороны, характер электроэнцефалограммы меняется с нерегулярного и непредсказуемого на гораздо более гладкий [19, с. 26-27]. См. также [18] об анализе возможной роли хаоса в развитии болезни сердца. Нередко то, что мы наблюдаем в природе, интригует нас бесконечным повторением одного и то же узора, увеличенного или уменьшенного во сколько угодно раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т. д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды — вы снова увидите горы. Приблизьте картинку еще — вы по-прежнему будете различать нечто, напоминающее горы, благодаря вашей способности (статистической по сути) различать тип объекта на рисунке. Так проявляется характерное для фракталов свойство самоподобия (п. 2.1 и 5.1). Во многих работах по фракталам самоподобие используется в качестве определяющего свойства. Следуя Бенуа Мандельброту [31], мы принимаем точку зрения, согласно которой фракталы должны определяться в терминах фрактальной (дробной) размерности (глава 5). Отсюда и происхождение слова фрактал. Понятие дробной размерности представляет собой весьма сложную концепцию, которую мы изложим в несколько этапов. Прямая — это одномерный объект, а плоскость — двумерный. Как мы увидим далее, хорошенько перекрутив прямую или плоскость, можно повысить размерность полученной конфигурации; при этом новая размерность обычно будет дробной в некотором смысле, который нам предстоит уточнить. Связь дробной размерности и самоподобия состоит в том, что с помощью самоподобия можно сконструировать множество дробной размерности наиболее простым образом (п. 2.1). Даже в случае гораздо более сложных фракталов, таких, как граница множества Мандельброта (п. 8.3), когда чистое самоподобие отсутствует, имеется почти полное повторение базовой формы во все более и более уменьшенном виде. В английском языке хаос обычно определяется как состояние полного беспорядка или неразберихи. Некоторые словари прибегают к понятию состояния, в котором правит случай. Термин хаос в математике используется в узком смысле. Хотя универсального определения математического хаоса не существует, имеется, по-видимому, полное согласие в том, что любой вид хаоса обладает свойством непредсказуемости. Это свойство называют существенной зависимостью от начальных условий (п. 6.5). Как ни странно, оно не эквивалентно случайному поведению. По сути дела, математический хаос — это характерная черта именно детерминированных динамических систем. Поэтому наблюдаемые в состоянии хаоса флуктуации только кажутся случайными — их значения полностью предопределены входными параметрами. Но на практике мы никогда не располагаем абсолютно точной информацией о начальных условиях. Ошибки, пусть и ничтожные, всегда имеют место при измерении входных параметров. То, что кажется нам случайным результатом на выходе динамической системы, обусловлено большими ошибками, которые могут появиться, когда система ведет себя хаотично. Когда-то считалось, что в детерминированной системе, при наличии достаточного объема вычислительных ресурсов, мы всегда в состоянии сделать значимое предсказание (например, дать надежный прогноз погоды), несмотря на маленькие ошибки измерения текущего состояния. В присутствии хаоса это не так. Никакой самый мощный компьютер не позволит нам сделать точный прогноз на основе математической системы с существенной зависимостью от начальных условий. С нашей точки зрения, наиболее интересный вопрос теории фракталов и хаоса состоит в том, как связать эти понятия воедино. Многие важные фракталы, включая снежинку Коха, ковер Серпинского и классическое множество Кантора, обсуждаемые во второй главе, могут быть получены как аттракторы систем итерированных функций (глава 4). Анализ этих систем итерированных функций указывает путь к построению хаотических операторов, ассоциированных с упомянутыми фракталами (глава 7).
|
Оглавление
|