1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
Макеты страниц
3.5. Метрика Хаусдорфа IОдним из основных математических аспектов теории фракталов является вопрос о сходимости некоторой последовательности множеств к фракталу. К примеру, для того чтобы построить ковер Серпинского, мы начинаем с замкнутой треугольной области и, выкидывая на каждом шаге внутренние треугольники, получаем аппроксимирующие множества. Кажется вполне правдоподобным (см. рис. 2.5), что предельное множество в действительности является фракталом. Наша первая задача — разобраться с понятием предела последовательности множеств. Для этого необходимо определить подходящую метрику на интересующих нас множествах. Метрика, которой мы будем пользоваться, называется метрикой Хаусдорфа. Метрика Хаусдорфа определяется на множестве Требование компактности не ограничивает применимости дальнейших результатов, так как в наших построениях мы всегда будем использовать только компактные множества; более того, оказывается, что и предельные множества — фракталы — всегда компактны. Обозначим через Е и F два непустых компактных подмножества Для произвольного множества Е из пространства Замечание: в некоторых источниках дилатация определяется с использованием открытого шара, в то время как мы используем замкнутый шар. Наш выбор обусловлен тем, что в случае замкнутого шара доказательства теорем из прил. Определение. Пусть Е и F — непустые компактные подмножества Пример. Пусть А и В — эллипсы (рис. 3.13): Видно, что наименьшее Доказательство следующей теоремы вынесено в прил. А.3. Рис. 3.13. Определение расстояния Хаусдорфа через дилатации Теорема 3.5.8. Пусть Следствие 3.5.1. Пусть Введем Тогда Е — непустой компакт, и последовательность множеств Это следствие непосредственно применимо к фракталам, при построении которых последовательно удаляются открытые подмножества. Примерами могут служить классическое множество Кантора (рис. 2.20) и ковер Серпинского (рис. 2.5). И в том, и в другом случае аппроксимирующие множества сходятся к соответствующим фракталам в метрике Хаусдорфа.
|
Оглавление
|