ЕГЭ и ОГЭ
Хочу знать
Главная > Разное > Фракталы и хаос в динамических системах. Основы теории
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3.5. Метрика Хаусдорфа I

Одним из основных математических аспектов теории фракталов является вопрос о сходимости некоторой последовательности множеств к фракталу. К примеру, для того чтобы построить ковер Серпинского, мы начинаем с замкнутой треугольной области и, выкидывая на каждом шаге внутренние треугольники, получаем аппроксимирующие множества. Кажется вполне правдоподобным (см. рис. 2.5), что предельное множество в действительности является фракталом.

Наша первая задача — разобраться с понятием предела последовательности множеств. Для этого необходимо определить подходящую метрику на интересующих нас множествах. Метрика, которой мы будем пользоваться, называется метрикой Хаусдорфа.

Метрика Хаусдорфа определяется на множестве всех непустых компактных подмножеств пространства . Таким образом, «точки» суть компакты. «Точками» могут быть фигуры, изображенные на рис. 2.5, или даже само предельное множество (ковер Серпинского).

Требование компактности не ограничивает применимости дальнейших результатов, так как в наших построениях мы всегда будем использовать только компактные множества; более того, оказывается, что и предельные множества — фракталы — всегда компактны.

Обозначим через Е и F два непустых компактных подмножества . Хаусдорфово расстояние между Е и F можно задать несколькими способами. В этом параграфе мы придерживаемся интуитивного определения. Вопрос о том, является ли расстояние Хаусдорфа метрикой, вынесен в прил. А.3, в котором дается другое определение и доказывается, что расстояние Хаусдорфа действительно обладает всеми свойствами метрики. Там же доказывается эквивалентность двух определений.

Для произвольного множества Е из пространства и радиуса дилатацией Е радиуса (обозначается ), называется векторная сумма (рис. 3.2). Здесь — замкнутый шар радиуса с центром в начале координат. Формально:

Замечание: в некоторых источниках дилатация определяется с использованием открытого шара, в то время как мы используем замкнутый шар. Наш выбор обусловлен тем, что в случае замкнутого шара доказательства теорем из прил. несколько упрощаются.

Определение. Пусть Е и F — непустые компактные подмножества Расстояние Хаусдорфа между Е и

Пример. Пусть А и В — эллипсы (рис. 3.13):

Видно, что наименьшее , при котором , составляет Поэтому

Доказательство следующей теоремы вынесено в прил. А.3.

Рис. 3.13. Определение расстояния Хаусдорфа через дилатации

Теорема 3.5.8. Пусть — компактные множества. Для того чтобы в метрике Хаусдорфа, необходимо и достаточно, чтобы для каждого нашелся такой номер N, что из следует .

Следствие 3.5.1. Пусть — последовательность компактных множеств, вложенных друг в друга:

Введем

Тогда Е — непустой компакт, и последовательность множеств сходится к хаусдорфовой метрике:

Это следствие непосредственно применимо к фракталам, при построении которых последовательно удаляются открытые подмножества. Примерами могут служить классическое множество Кантора (рис. 2.20) и ковер Серпинского (рис. 2.5). И в том, и в другом случае аппроксимирующие множества сходятся к соответствующим фракталам в метрике Хаусдорфа.

<< Предыдущий параграф Следующий параграф >>
Оглавление