ЕГЭ и ОГЭ
Хочу знать
Главная > Разное > Фракталы и хаос в динамических системах. Основы теории
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Ковер Серпинского.

Еще один пример простого самоподобного фрактала — ковер Серпинского (рис. 2.4), придуманный польским математиком Вацлавом Серпинским в 1915 году. Сам термин ковер (gasket) принадлежит Мандельброту. В способе построения, следующем ниже, мы начинаем с некоторой области и последовательно выбрасываем внутренние подобласти. Позднее мы рассмотрим и другие способы, в частности с использованием L-систем (п. 2.2), а также на основе систем итерированных функций (глава 4).

Рис. 2.4. Ковер Серпинского

Пусть начальное множество — равносторонний треугольник вместе с областью, которую он замыкает. Разобьем на четыре меньшие треугольные области, соединив отрезками середины сторон исходного треугольника.

Рис. 2.5. Построение ковра Серпинского

Удалим внутренность маленькой центральной треугольной области. Назовем оставшееся множество (рис. 2.5). Затем повторим процесс для каждого из трех оставшихся маленьких треугольников и получим следующее приближение . Продолжая таким образом, получим последовательность вложенных множеств чье пересечение и образует ковер 5.

Из построения видно, что весь ковер представляет собой объединение существенно непересекающихся уменьшенных в два раза копий; коэффициент подобия (как по горизонтали, так и по вертикали). Следовательно, S — самоподобный фрактал с размерностью:

Очевидно, что суммарная площадь частей, выкинутых при построении, в точности равна площади исходного треугольника. На первом шаге мы выбросили 1/4 часть площади. На следующем шаге мы выбросили три треугольника, причем площадь каждого равна площади исходного. Рассуждая таким образом, мы убеждаемся, что полная доля выкинутой площади составила:

Эта сумма равна 1 (упр. 4 в конце этого параграфа). Следовательно, мы можем утверждать, что оставшееся множество S, то есть ковер, имеет площадь меры нуль.

Это выделяет множество S в разряд «совершенного», в том смысле, что оно разбивает свое дополнение на бесконечное число треугольных областей, обладая при этом нулевой толщиной.

<< Предыдущий параграф Следующий параграф >>
Оглавление