ЕГЭ и ОГЭ
Хочу знать
Главная > Разное > Фракталы и хаос в динамических системах. Основы теории
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 2. Классические фракталы

2.1. Самоподобие

Разделим отрезок прямой на N равных частей. Тогда каждую часть можно считать копией всего отрезка, уменьшенной в 1/r раз. Очевидно, N и связаны соотношением Nr = 1 (рис. 2.1). Если квадрат разбить на N равных квадратов (с площадью, в раз меньше площади исходного), то соотношение запишется как . Если куб разбить на N равных кубов (с объемом, в раз меньше объема исходного), то соотношение примет следующий вид: . Заметим, что размерность d объекта, будь то одномерный отрезок, двумерный квадрат или трехмерный куб, появляется как степень в соотношении между N, числом равных подобъектов, и коэффициентом подобия . А именно:

Множества, построенные на рис. 2.1, обладают целой размерностью. Зададимся вопросом, возможно ли такое построение, при котором показатель d в равенстве (2.1) не является целым, то есть такое, что при разбиении исходного множества на N непересекающихся подмножеств, полученных масштабированием оригинала с коэффициентом , значение d не будет выражаться целым числом. Ответ, как мы убедимся — решительное да! Такое множество называют самоподобным фракталом. Величину d называют фрактальной (дробной) размерностью или размерностью подобия. Явное выражение для d через N и находится логарифмированием обеих частей

Логарифм можно взять по любому положительному основанию, отличному от единицы например по основанию 10 или по основанию .

Рис. 2.1. Связь размерности и коэффициента подобия

Более общий тип самоподобных фракталов рассматривается в п. 5.1. Фрактал по-прежнему может быть объединением непересекающихся подмножеств, полученных масштабированием оригинала, но коэффициенты подобия уже не обязательно одни и те же для всех подмножеств. В этом случае формула для размерности (2.2) неприменима.

Термин фрактал был впервые введен в 1975 году Бенуа Мандельбротом, пионером в области фрактальной геометрии. Многие математические идеи оформились задолго до этого, еще в XIX-м веке, в работах Георга Кантора, Карла Вейерштрасса, Джузеппе Пеано и других. Понятие фрактальной (дробной) размерности появилось в 1919 году в работе Феликса Хаусдорфа. Тем не менее, именно Мандельброт объединил эти идеи и положил начало систематическому изучению фракталов и их приложений.

В 5-й главе и в прил. А.5 будет дано строгое математическое изложение вопросов, связанных с дробной размерностью.

При этом следует иметь в виду, что понятие фрактала еще находится в развитии и разные источники могут использовать различные определения. Заметим здесь, что некоторые множества целой размерности также являются фракталами, как следует из нашего определения.

<< Предыдущий параграф Следующий параграф >>
Оглавление