1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
Макеты страниц
4.3. СИФ со сгущениемБудем по-прежнему понимать под где С — произвольное подмножество Сгущение Пусть в нашем распоряжении имеется СИФ, заданная сжимающими отображениями где Тем самым мы уже почти доказали основную теорему о ССИФ. Теорема 4.3.3. Пусть ССИФ задана сжимающими отображениями Пусть а также Положим Тогда и — аттрактор ССИФ. Доказательство. Для доказательства первого утверждения мы воспользуемся следующим соотношением (см. упр. 5 в конце этого параграфа): Имеем: Второе утверждение, Пример ССИФ представлен на рис. 4.10. Здесь множество сгущения С — фрактал, а именно фигура «сорняка», полученная с помощью L-системы. Данная ССИФ задается единственным сжимающим отображением, помимо тривиального: Для вывода на экран можно использовать программу ТЕРТЛ-ГРАФИКА, предусмотрев возможность изменения масштаба и положения изображения каждый раз, когда встречается кодовое слово для фигуры «сорняк». Само кодовое слово есть результат работы алгоритма 2.2.1 ( То есть кодовое слово задается выражением: Продолжая в том же ключе, мы можем пойти дальше и использовать все множество ССИФ, показанное на рис. 4.10, в качестве множества сгущения для новой ССИФ. Добавим к тривиальному отображению сжимающее отображение, которое все уменьшает и сдвигает вправо и вверх, например такое: Результат показан на рис. 4.11. Полученное изображение можно рассматривать как дважды итерированную ССИФ, подобно двойному интегралу в математическом анализе. Эта дважды итерированная ССИФ, очевидно, не эквивалентна ССИФ с тремя сжимающими отображениями С помощью алгоритма ССИФ можно строить огромное количество разнообразнейших фрактальных конфигураций. Фигура «дерево» представляет собой удачный с точки зрения эстетического восприятия пример такого построения. Здесь множество сгущения С (рис. 4.13) играет роль ствола дерева с двумя главными ветвями. Мы выбрали аффинные преобразования Для компьютерной реализации описанного алгоритма применяется рекурсия. Главная программа ДЕРЕВО (которую мы не приводим) инициализирует графический режим, определяет и выводит на экран множество сгущения С и вызывает рекурсивную подпрограмму ВЕТВЬ (алгоритм 4.3.3). В этой подпрограмме на каждом уровне рекурсии вычисляются новые вершины, которые соединяются отрезками с вершинами предыдущего уровня. Множество С хранится в виде массива вершин: Добавление ветвей осуществляют следующие четыре аффинных преобразования (рис. 4.13): В следующем алгоритме команда «построить V» (или «построить V1» и т. п.) означает такую последовательность действий: Рис. 4.10. ССИФ Рис. 4.11. Итерирование предыдущей фигуры с помощью Рис. 4.12. Та же ССИФ, с использованием Рис. 4.13. Множество сгущения С и первая итерация Рис. 4.14. Дерево, построенное с помощью ССИФ Алгоритм 4.3.3. (ВЕТВЬ) Назначение: рекурсивная часть кода ССИФ для фигуры «дерево» Вход: Выход: изображение фигуры «дерево». Шаги: Использование рекурсии позволило записать алгоритм замечательно простым образом.
|
Оглавление
|