ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава IV. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ЦЕНТРУ. УСЛОВИЯ РАВНОВЕСИЯ

§ 11. ТЕОРЕМА О ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ СИЛЫ

Равнодействующая системы сходящихся сил непосредственно находится с пбмощью закона параллелограмма сил. Очевидно, что аналогичную задачу можно будет решить и для произвольной системы сил, если найти для них метод, позволяющий перенести все силы в одну точку. Такой метод дает следующая теорема: силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого ею действия, переносить из данной точки в любую другую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, Куда сила переносится.

Рис. 37

Пусть на твердое тело действует сила F, приложенная в точке А (рис. 37, а). Действие этой силы не изменяется, если в любой точке тела приложить две уравновешенные силы такие, что . Полученная система трех сил и представляет собой силу F, равную F, но приложенную в точке В, и пару F, F с моментом

Последнее равенство следует из формулы (15). Таким образом, теорема доказана. Результат, даваемый теоремой, можно еще изобразить так, как это показано на рис. 37, б (силу F на этом рисунке надо считать отброшенной). Рассмотрим примеры, иллюстрирующие теорему.

Пример 1. Чтобы удержать в равновесии однородный брус АВ длиной 2а и весом Р, надо приложить в его середине С направленную вверх силу Q, по модулю равную Р (рис. 38, а). Согласно доказанной теореме силу Q можно заменить силой O, приложенной к концу А бруса, и парой с моментом, модуль которого

Рис. 38

Рис. 39

Если плечо этой пары уменьшить до величины h (рис. 38, б), то образующие ее силы надо увеличить так, чтобы было Следовательно, чтобы удержать брус за его конец А, надо кроме силы Q приложить еще пару F, F. Этот результат, вытекающий из доказанной теоремы, непосредственно «ощущает» рука человека, удерживающая брус за его середину (рис. 38, а) или за конец (рис. 38, б).

Пример 2. На барабан 1 радиуса намотаны в противоположных направлениях две нити, к концам которых прикладывают силы F и (рис. 39); на барабан 2 того же радиуса намотана одна нить, к которой прикладывают силу, равную Рассмотрим, чем будут отличаться действия этих сил.

На барабан 1 действует только пара сил F, F с моментом, численно равным вращающая барабан. Силу, действующую на барабан 2, можно заменить силой приложенной к оси барабана, и парой В результате находим, что на этот барабан действуют: 1) пара с численно таким же, как и в первом случае, моментом вращающая барабан, и 2) сила оказывающая давление на ось барабана.

Итак, оба барабана будут вращаться одинаково. Но при этом ось второго барабана испытывает давление, равное а ось первого барабана никакого давления не испытывает.

<< Предыдущий параграф Следующий параграф >>
Оглавление