ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ВВЕДЕНИЕ

Современная техника ставит перед инженерами множество задач, решение которых связано с исследованием так называемого механического движения и механического взаимодействия материальных тел.

Механическим движением называют происходящее с течением времени изменение взаимного положения материальных тел в пространстве. Под механическим взаимодействием понимают те действия материальных тел друг на друга, в результате которых происходит изменение движения этих тел или изменение их формы (деформация). За основную меру этих действий принимают величину, называемую силой. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения, тепловое движение молекул и т. п., а в технике — движение различных наземных или водных транспортных средств и летательных аппаратов, движение частей всевозможных машин, механизмов и двигателей, деформация элементов тех или иных конструкций и сооружений, течение жидкости и газов и многое другое. Примерами же механических взаимодействий являются взаимные притяжения материальных тел по закону всемирного тяготения, взаимные давления соприкасающихся (или соударяющихся) тел, воздействия частиц жидкости и газа друг на друга и на движущиеся или покоящиеся в них тела и т. д.

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности: сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.

В основе механики лежат законы, называемые законами классической механики (или законами Ньютона), которые установлены путем обобщения результатов многочисленных опытов и наблюдений и нашли подтверждение в процессе всей общественно-производственной практики человечества.

Это позволяет рассматривать знания, основанные на законах механики, как достоверные знания, на которые инженер может смело опираться в своей практической деятельности.

Общий метод научных исследований состоит в том, что при рассмотрении того или иного явления в нем выделяют главное, определяющее, а от всего остального, сопутствующего данному явлению, абстрагируются. В результате вместо реального явления или объекта рассматривают некоторую его модель и вводят ряд абстрактных понятий, отражающих соответствующие свойства этого явления (объекта). Такие научные абстракции, как указывал В. И. Ленин, «отражают природу глубже, вернее, полнее» и играют при построении науки исключительно важную роль.

В классической механике научными абстракциями или моделями являются по существу все вводимые исходные положения и понятия. Они учитывают то основное, определяющее, что существенно для рассматриваемого механического движения и позволяет его строго охарактеризовать и изучить. Так, например, вместо реальных материальных тел в механике рассматривают такие их абстрактные модели, как материальная точка, абсолютно твердое тело или сплошная изменяемая среда, абстрагируясь от учета в первом случае формы и размеров тела, во втором — его деформаций, в третьем — молекулярной структуры среды. Но только построив механику такого рода моделей, можно разработать методы, позволяющие изучать с пригодной для практики точностью равновесие и движение реальных объектов, проверяя в свою очередь эту пригодность опытом, практикой.

Роль и значение теоретической механики в инженерном образовании определяется тем, что она является научной базой очень многих областей современной техники. Одновременно законы и методы механики как естественной науки, т. е. науки о природе, позволяют изучить и объяснить целый ряд важных явлений в окружающем нас мире и способствуют дальнейшему росту и развитию естествознания в целом, а также выработке правильного материального мировоззрения.

По характеру рассматриваемых задач механику принято разделять на статику, кинематику и динамик у. В статике излагается учение о силах и об условиях равновесия материальных тел под действием сил. В кинематике рассматриваются общие геометрические свойства движения тел.

Наконец, в динамике изучается движение материальных тел под действием сил.

Возникновение и развитие механики как науки неразрывно связано с историей развития производительных сил общества, с уровнем производства и техники на каждом этапе этого развития.

В древние времена, когда запросы производства сводились главным образом к удовлетворению нужд строительной техники, начинает развиваться учение о так называемых простейших машинах (блок, ворот, рычаг, наклонная плоскость) и общее учение о равновесии тел (статика). Обоснование начал статики содержится уже в сочинениях одного из великих ученых древности Архимеда (287— 212 г. до н. э.).

Развитие динамики начинается значительно позже. В XV—XVI столетиях возникновение и рост в странах Западной и Центральной Европы буржуазных отношений послужили толчком к значительному подъему ремесел, торговли, мореплавания и военного дела (появление огнестрельного оружия), а также к важным астрономическим открытиям. Все это способствовало накоплению большого опытного материала, систематизация и обобщение которого привели в XVII столетии к открытию законов динамики. Главные заслуги в создании основ динамики принадлежат гениальным исследователям Галилео Галилею (1564—1642) и Исааку Ньютону (1643—1727). В сочинении Ньютона «Математические начала натуральной философии», изданном в 1687 г., и были изложены в систематическом виде основные законы классической механики (законы Ньютона).

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов, основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения задач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.

Кинематика, как отдельный раздел механики, выделилась лишь в XIX в. под влиянием запросов развивающегося машиностроения. В настоящее время кинематика имеет и большое самостоятельное значение для изучения движения механизмов и машин.

В России на развитие первых исследований по механике большое влияние оказали труды гениального ученого и мыслителя М. В. Ломоносова (1711—1765), а также творчество Л. Эйлера, долгое время жившего в России и работавшего в Петербургской академии наук.

Из многочисленных отечественных ученых, внесших значительный вклад в развитие различных областей механики, прежде всего должны быть названы: М. В. Остроградский (1801—1861), которому принадлежит ряд важных исследований по аналитическим методам решения задач механики; П. Л. Чебышев (1821—1894), создавший новое направление в исследовании движения механизмов; С. В. Ковалевская (1850—1891), решившая одну из труднейших задач динамики твердого тела; А. М. Ляпунов (1857—1918), который дал строгую постановку одной из фундаментальных задач механики и всего естествознания — задачи об устойчивости равновесия и движения и разработал наиболее общие методы ее решения; И. В. Мещерский (1859—1935), внесший большой вклад в решение задач механики тел переменной массы; К. Э. Циолковский (1857—1935), автор ряда фундаментальных исследований по теории реактивного движения; А. Н. Крылов (1863—1945), разработавший теорию корабля и много внесший в развитие теории гироскопа и гироскопических приборов.

Выдающееся значение для дальнейшего развития механики имели труды «отца русской авиации» Н. Е. Жуковского (1847—1921) и его ближайшего ученика основоположника газовой динамики С. А. Чаплыгина (1869—1942). Характерной чертой творчества Н. Е. Жуковского было приложение методов механики к решению актуальных технических задач, примером чему служат многие его труды по динамике самолета, разработанная им теория гидравлического удара в трубах и др. Большое влияние идеи Н. Е. Жуковского оказали и на преподавание механики в высших технических учебных заведениях нашей страны.

В наши дни перед отечественной наукой и техникой стоят важные задачи по ускорению научно-технического прогресса и дальнейшему развитию и совершенствованию социалистического производства. В числе этих задач такие актуальные проблемы, как автоматизация производственных процессов и их оптимизация, создание и внедрение промышленных роботов, эффективное использование всех конструкционных материалов и многие другие. Для решения этих задач важное значение имеет дальнейшее повышение качества подготовки инженерных кадров, расширение теоретической базы их знаний, в том числе и знаний в области одной из фундаментальных общенаучных дисциплин — теоретической механики.

<< Предыдущий параграф Следующий параграф >>
Оглавление