1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
Макеты страниц
§ 80. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧРешение задач динамики точки путем интегрирования соответствующих дифференциальных уравнений движения сводится к следующим операциям. 1. Составление дифференциального уравнения движения. Для его составления в случае прямолинейного движения надо: а) выбрать начало отсчета (как правило, совмещая его с начальным положением точки) и провести координатную ось, направляя ее вдоль траектории и, как правило, в сторону движения; если под действием приложенных сил точка может находиться в каком-нибудь положении в равновесии, то начало отсчета удобно помещать в положении статического равновесия; б) изобразить двужущуюся точку в произвольном положении (но так, чтобы было в) подсчитать сумму проекций всех сил на координатную ось и подставить эту сумму в правую часть дифференциального уравнения движения; при этом надо обязательно все переменные силы выразить через те величины (t, х или v), от которых эти силы зависят. 2. Интегрирование дифференциального уравнения движения. Интегрирование производится методами, известными из курса высшей математики и зависящими от вида полученного уравнения, т. е. от вида его правой части. В тех случаях, когда на точку кроме постоянных сил действует одна переменная сила, зависящая только от времени t или только от расстояния 3. Определение постоянных интегрирования. Для определения постоянных интегрирования надо по данным задачи установить начальные условия в виде (16). Значения постоянных по начальным условиям находятся так, как это было показано в задаче 90. При этом постоянные можно определять непосредственно после каждого интегрирования. Если дифференциальное уравнение движения является уравнением с разделяющимися переменными, то вместо введения постоянных интегрирования можно брать сразу от обеих частей равенства определенные интегралы в соответствующих пределах; пример такого расчета дан в задаче 93. 4. Нахождение искомых в задаче величин и исследование полученных результатов. Чтобы иметь возможность исследовать решение, а также произвести косвенную проверку результата подсчетом размерностей, надо все решение проводить до конца в общем виде (в буквах), подставляя числовые данные только в окончательные результаты. Сделанные здесь указания относятся и к случаю криволинейного движения. Рассмотрим три конкретные задачи, в которых сила зависит от времени, от расстояния и от скорости точки. 1. Сила зависит от времени Задача 91. Груз весом Р начинает двигаться из состояния покоя вдоль гладкой горизонтальной плоскости под действием силы F, значение которой растет пропорционально времени по закону Решение. Выберем начало отсчета О в начальном положении груза и направим ось Рис. 216 Умножив обе части этого равенства на Подставляя сюда начальные данные, найдем, что Умножая обе части этого равенства на Подстановка начальных данных дает Таким образом, проходимый грузом путь будет расти пропорционально кубу времени. 2. Сила зависит от расстояния Задача 92. Пренебрегая трением и сопротивлением воздуха, определить, в течение какого промежутка времени тело пройдет по прорытому сквозь Землю вдоль хорды АВ каналу от его начала А до конца В (рис. 217). При подсчете считать радиус Земли Рис. 217 Указани е. В теории притяжения доказывается, что тело, находящееся внутри Земли, притягивается к ее центру с силой F, прямо пропорциональной расстоянию Принимая во внимание, что при где Решение. Поместим начало отсчета О в середине хорды АВ (в этой точке тело, находящееся в канале, было бы в равновесии) и направим ось В произвольном положении на тело действуют силы F и N. Следовательно, так как из чертежа видно, что Действующая сила оказалась зависящей от координаты получим Умножая обе части этого равенства на По начальным условиям при Считая, что в рассматриваемом положении скорость направлена от М к О, т. е. что Разделяя переменные, приведем это уравнение к виду и, интегрируя, получим Подставляя сюда начальные данные (при Следовательно, тело будет совершать в канале АВ гармонические колебания с амплитудой а. Найдем теперь время движения тела до конца В канала. В точке В координата Этот очень интересный результат породил ряд (пока еще фантастических) проектов прорытия такого канала. Найдем дополнительно, чему будет равна при движении максимальная скорость тела. Из выражения для Если, например, Колебания, совершаемые материальной точкой под действием силы, пропорциональной расстоянию, будут подробнее изучены в гл. XIX. Там будет рассмотрен другой метод интегрирования получающихся в этом случае дифференциальных уравнений движения. 3. Сила зависит от скорости Задача 93. Лодку, масса которой Рис. 218 Решение. Совместим начало отсчета О с начальным положением лодки и направим ось Ох в сторону движения (рис. 218). Тогда начальные условия будут: при Примечание. Никакие другие силы на лодку не действуют. Сила, сообщившая лодке толчок, действовала на лодку до момента Вычисляя проекции действующих сил, находим, что Для определения времени движения составляем дифференциальное уравнение (13), Замечая, что в данном случае Проинтегрируем это уравнение, беря от обеих его частей после разделения переменных соответствующие определенные интегралы. При этом нижним пределом каждого из интегралов будет значение переменного интегрирования в начальный момент, а верхним — значение того же переменного в произвольный момент времени. По условиям данной задачи при Отсюда окончательно Искомое время Для определения пройденного пути целесообразно вновь составить дифференциальное уравнение движения в виде (14), так как это уравнение позволяет сразу установить зависимость между х и v, Тогда получим Отсюда, сокращая на v, разделяя переменные и учитывая, что при Следовательно, Полагая Чтобы найти путь, пройденный лодкой до остановки, следует в равенстве (б) положить Определяя время движения до остановки, мы из равенства (а) найдем, что при Другой интересный пример движения под действием силы, зависящей от скорости, рассмотрен в следующем параграфе.
|
Оглавление
|