ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 108. ЗАКОН СОХРАНЕНИЯ ДВИЖЕНИЯ ЦЕНТРА МАСС

Из теоремы о движении центра масс можно получить следующие важные следствия.

1. Пусть сумма внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (16) следует, что или

Следовательно, если сумма всех внешних сил, действующих на систему, равна нулю, то центр масс этой системы движется с постоянной по модулю и направлению скоростью, т. е. равномерно и прямолинейно. В частности, если вначале центр масс был в покое, то он и останется в покое. Действие внутренних сил, как мы видим, движение центра масс системы изменить не может.

2. Пусть сумма внешних сил, действующих на систему, не равна нулю, но эти силы таковы, что сумма их проекций на какую-нибудь ось (например, ось х) равна нулю:

Тогда первое из уравнений (16) дает

Следовательно, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция скорости центра масс системы на эту ось есть величина постоянная. В частности, если в начальный момент то и в любой последующий момент времени , т. е. центр масс системы в этом случае вдоль оси перемещаться не будет

Все эти результаты выражают собой закон сохранения движения центра масс системы. Рассмотрим некоторые примеры, иллюстрирующие его приложения.

Движение центра масс Солнечной системы. Так как притяжением звезд можно практически пренебречь, то можно считать, что на Солнечную систему никакие внешние силы не действуют. Следовательно, в первом приближении ее центр масс движется по отношению к звездам равномерно и прямолинейно.

Действие пары сил на тело (см., например, рис. 32). Если на свободное твердое тело начнет действовать пара сил , то геометрическая сумма этих внешних сил будет равна нулю . Следовательно, центр масс С тела, если он вначале был неподвижен, должен остаться неподвижным и при действии пары. Таким образом, где бы к свободному твердому телу ни была приложена пара сил, тело начнет вращаться вокруг своего центра масс (но мгновенная ось вращения в общем случае не будет направлена перпендикулярно плоскости действия пары, как можно предположить).

Движение по горизонтальной плоскости. При отсутствии трения человек с помощью своих мускульных усилий (силы внутренние) не мог бы двигаться вдоль горизонтальной плоскости, так как в этом случае сумма проекций на любую горизонтальную ось всех приложенных к человеку внешних сил (сила тяжести и реакция плоскости) будет равна нулю и центр масс человека вдоль плоскости перемещаться не будет ).

Если, например, человек вынесет правую ногу вперед, то левая его нога скользнет назад, а центр масс останется на месте. При наличии же трения скольжению левой ноги назад будет препятствовать сила трения, которая в этом случае будет направлена вперед. Эта сила и будет той внешней силой, которая позволяет человеку перемещаться в сторону ее действия (в данном случае вперед).

Аналогично происходит движение тепловоза или автомобиля. Сила давления газа в двигателе является силой внутренней и сама по себе не может переместить центр масс системы. Движение происходит потому, что двигатель передает соответствующим колесам, называемым ведущими, вращающий момент. При этом точка касания В ведущего колеса (рис. 284) стремится скользить влево. Тогда на колесо будет действовать сила трения, направленная вправо. Эта внешняя сила и позволит центру тяжести тепловоза или автомобиля двигаться вправо. Когда этой силы нет или когда она недостаточна для преодоления сопротивления, испытываемого ведомыми колесами движения вправо не будет; ведущие колеса будут при этом вращаться на месте (буксовать).

Торможение. Для торможения к барабану, жестко связанному с катящимся колесом, прижимают тормозную колодку. Возникающая при этом сила трения колодки о барабан будет силой внутренней и сама по себе не изменит движение центра масс, т. е. не затормозит поезд или автомобиль. Однако трение колодки о барабан будет замедлять вращение колеса вокруг его оси и увеличит силу трения колеса о рельс (или грунт), направленную противоположно движению. Эта внешняя сила и будет замедлять движение центра масс поезда или автомобиля, т. е. создавать торможение (см. задачу 154 в § 130).

Рис. 284

В заключение отметим, что движение объекта в предыдущих примерах происходит, конечно, за счет работы внутренних сил (двигателя автомобиля или мускулов ног человека). Но привести в движение центр масс объекта внутренние силы могут лишь тогда, когда они вызывают такое взаимодействие объекта с внешней средой, при котором на объект начинают действовать внешние силы (в примерах это силы трения). Другой возможностью является реактивный эффект (см. § 112, 114). Никакое устройство, не обеспечивающее появление таких внешних сил или не создающее реактивного эффекта, привести в движение центр масс объекта за счет действия одних только внутренних сил не может. В таких предлагавшихся устройствах, как «машина Дина» или «инерцоид», движение объекта тоже происходит за счет его взаимодействия с внешней средой, но менее явно выраженного, что давало повод необоснованно отрицать наличие такого взаимодействия.

<< Предыдущий параграф Следующий параграф >>
Оглавление