1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
Макеты страниц
§ 56. ОПРЕДЕЛЕНИЕ СКОРОСТЕЙ ТОЧЕК ПЛОСКОЙ ФИГУРЫ С ПОМОЩЬЮ МГНОВЕННОГО ЦЕНТРА СКОРОСТЕЙ. ПОНЯТИЕ О ЦЕНТРОИДАХДругой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей. Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент времени равна нулю. Рис. 150 Легко убедиться, что если фигура движется непоступательно, то такая точка в каждый момент Еремени t существует и притом единственная. Пусть в момент времени t точки А и В плоской фигуры имеют скорости Если теперь в момент времени t взять точку Р за полюс, то по формуле (52) скорость точки А будет так как При этом согласно соотношениям (53): Из равенств (55) следует еще, что т. е. что скорости точек плоской фигуры пропорциональны их расстояниям от мгновенного центра скоростей. Полученные результаты приводят к следующим выводам. 1. Для определения мгновенного центра скоростей надо знать только направления скоростей 2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой ее точки В. Тогда, восставив из точек А и В перпендикуляры к 3. Угловая скорость со плоской фигуры равна в каждый данный момент времени отношению скорости какой-нибудь точки фигуры к ее расстоянию от мгновенного центра скоростей Р: что видно из формул (55). Найдем еще другое выражение для Из равенств (52) и (53) следует, что Когда Рис. 151 Равенства (57) и (58) определяют одну и ту же величину, так как по доказанному (см. § 52) поворот плоской фигуры вокруг точки А или точки Р происходит с одной и той же угловой скоростью со. Пример. Для линейки AD эллипсографа (рис. 151) направления скоростей точек А и В известны. Восставляя к ним перпендикуляры, найдем мгновенный центр скоростей Р линейки (эллипсограф можно представить себе в виде листа фанеры Зная Р, из пропорции Для угловой скорости линейки по формулам (57) или (58) находим Легко проверить, что обе формулы дают один и тот же результат. Рассмотрим некоторые частные случаи определения мгновенного центра скоростей. а) Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 152), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю Рис. 152 Рис. 153 б) Если скорости точек А и В плоской в) Если скорости точек А и Б плоской фигуры параллельны друг другу и при этом линия АВ перпендикулярна г) Если известны вектор скорости Мгновенный центр вращения и центроиды. Выше было показано, что скорости точек плоской фигуры распределены в каждый момент времени так, как если бы движение этой фигуры представляло собой вращение вокруг центра Р. По этой причине точку неподвижной плоскости, совпадающую с мгновенным центром скоростей, которую мы также будем обозначать буквой Р, называют мгновенным центром вращения, а ось Например, качение колеса, изображенного ниже на рис. 156, можно представить себе или как совокупность поступательного движения вместе с полюсом С и вращения вокруг этого полюса, или же как серию элементарных поворотов вокруг непрерывно изменяющей свое положение точки касания Р обода с рельсом. При движении плоской фигуры мгновенный центр Р непрерывно изменяет свое положение как на неподвижной плоскости Рис. 154 Рис. 155 Геометрическое место мгновенных центров вращения, т. е. положений точки Р на неподвижной плоскости, называют неподвижной центроидой, а геометрическое место мгновенных центров скоростей, т. е. положений точки Р в плоскости, связанной с фигурой и движущейся вместе с ней, — подвижной центроидой (рис. 154). В данный момент времени обе центроиды касаются друг друга в точке Р, являющейся для этого момента мгновенным центром вращения (или скоростей); пересекаться центроиды не могут, так как тогда в данный момент времени существовало бы больше одного мгновенного центра, что невозможно. В следующий момент времени будут соприкасаться точки Легко видеть, что для колеса, изображенного на рис. 156, ось Пример. Для линейки АВ эллипсографа (рис. 155) мгновенный центр вращения находится в точке Р (см. рис. 151). Так как расстояние
|
Оглавление
|