ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 143. ОБОБЩЕННЫЕ СИЛЫ

Рассмотрим механическую систему, состоящую из материальных точек, на которые действуют силы Пусть система имеет s степеней свободы и ее положение определятся обобщенными координатами (104). Сообщим системе такое независимое возможное перемещение, при котором координата получает приращение а остальные координаты не изменяются. Тогда каждый из радиусов-векторов точек системы получит элементарное приращение . Поскольку, согласно равенству (106), , а при рассматриваемом перемещении изменяется только координата (остальные сохраняют постоянные значения), то вычисляется как частный дифференциал и, следовательно,

Используя это равенство и формулу (42) из § 87, вычислим сумму элементарных работ всех действующих сил на рассматриваемом перемещении, которую обозначим Получим

Вынося общий множитель за скобки, найдем окончательно

где обозначено

По аналогии с равенством определяющим элементарную работу силы F, величину называют обобщенной силой, соответствующей координате

Сообщая системе другое независимое возможное перемещение, при котором изменяется только координата , получим для элементарной работы всех действующих сил на этом перемещении выражение

где

Величина представляет собой обобщенную силу, соответствующую координате , и т. д.

Очевидно, что если системе сообщить такое возможное перемещение, при котором одновременно изменяются все ее обобщенные координаты, то сумма элементарных работ приложенных сил на этом перемещении определится равенством

Формула (112) дает выражение полной элементарной работы всех действующих на систему сил в обобщенных координатах. Из этого равенства видно, что обобщенные силы это величины, равные коэффициентам при приращениях обобщенных координат в выражении полной элементарной работы действующих на систему сил.

Если все наложенные на систему связи являются идеальными, то работу при возможных перемещениях совершают только активные силы и величины будут представлять собой обобщенные активные силы системы.

Размерность обобщенной силы зависит от размерности соответствующей обобщенной координаты. Так как произведение а следовательно, и имеет размерность работы, то

т. е. размерность обобщенной силы равна размерности работы, деленной на размерность соответствующей обобщенной координаты. Отсюда видно, что если q — линейная величина, то Q имеет размерность обычной силы (в СИ измеряется в ньютонах), если q — угол (величина безмерная), то Q будет измеряться в и имеет размерность момента; если q — объем (например, положение поршня в цилиндре можно определять объемом запоршневого пространства), то Q будет измеряться в и имеет размерность давления, и т. д.

Как видим, по аналогии с обобщенной скоростью, понятием об обобщенной силе охватываются все величины, встречавшиеся ранее как меры механического взаимодействия материальных тел (сила, момент силы, давление).

Вычисление обобщенных сил будем производить по формулам вида (108), (110), что сводится к вычислению возможной элементарной работы (см. § 140). Сначала следует установить, каково число степеней свободы системы, выбрать обобщенные координаты и изобразить на чертеже все приложенные к системе активные силы и силы трения (если они совершают работу). Затем для определения надо сообщить системе такое возможное перемещение, при котором изменяется только координата получая положительное приращение вычислить на этом перемещении сумму элементарных работ всех действующих сил по формулам (101) и представить полученное выражение в виде (108). Тогда коэффициент при и дает искомую величину . Аналогично вычисляются

Пример 1. Подсчитаем обобщенную силу для системы, изображенной на рис. 366, где груз А весом перечещрется по гладкой наклонной плсскссти, а груз В весом — по шероховатой горизолтальной плоскости, коэффициент трения о которую равен

Рис. 366

Рис. 367

Грузы связаны нитью, перекинутой через блок О. Массой нити и блока пренебрегаем. Система имеет одну степень свободы положение определяется координатой (положительное направление отсчета показано стрелкой). Для определения сообщаем системе возможное перемещение при котором и вычисляем на этом перемещении элементарные работы сил остальные силы работы не совершают. Так как то

Следовательно,

Пример 2. Пренебрегая трением, найдем обобщенные силы для системы, изображенной на рис. 367. Однородный стержень А В имеет длину l и вес Р и может вращаться вокруг оси А в вертикальной плоскости. Нанизанный на него шарик М имеет вес . Длина пружины AM равна в ненапряженном состоянии а жесткость — с.

Система имеет две степени свободы (независимыми являются перемещение шарика вдоль стержня и поворот стержня вокруг оси А). В качестве обобщенных координат выберем угол и расстояние шарика от конца ненапряженной пружины положительные направления отсчета координат показаны стрелками.

Сообщаем сначала системе возможное перемещение, при котором угол получает приращение . На этом перемещении работу совершают» силы . По второй из формул (101) находим (знак минус здесь потому, что направление момента противоположно направлению )

Следовательно,

Теперь сообщаем системе возможное перемещение, при котором изменяется только координата получая приращение , а угол . На этом перемещении работу совершают сила тяжести и сила упругости, модуль которой Тогда

и

Обобщенная сила имеет в этом случае размерность момента, так как а сила — размерность обычной силы.

Случай потенциальных сил. Если все действующие на систему силы являются потенциальными, то для системы, как известно, существует такая силовая функция U, зависящая от координат точек системы, что сумма элементарных работ действующих сил равна полному дифференциалу этой функции, т. е. [см. § 126, формула (62)]. Но при переходе к обобщенным координатам все могут быть выражены через эти координаты и тогда ). Следовательно, вычисляя 6 U как полный дифференциал от функции найдем, что

Сравнивая это выражение с равенством (112), заключаем, что в данном случае

или, так как потенциальная энергия то

Следовательно, если все действующие на систему силы потенциальны, то обобщенные силы равны частным производным от силовой функции (или взятым со знаком минус частным производным от потенциальной энергии) по соответствующим обобщенным координатам.

Пример 3. Все силы, действующие на систему, изображенную на рис. 367, потенциальны. Если при этом направить координатную ось вертикально вверх, то по формулам (64), (64) из § 127 найдем для всей системы

где обобщенные координаты Тогда

Что совпадает с результатами, полученными в примере 2.

<< Предыдущий параграф Следующий параграф >>
Оглавление