ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 116. ТЕОРЕМА ОБ ИЗМЕНЕНИИ ГЛАВНОГО МОМЕНТА КОЛИЧЕСТВ ДВИЖЕНИЯ СИСТЕМЫ (ТЕОРЕМА МОМЕНТОВ)

Теорема моментов, доказанная для одной материальной точки (см. § 85), будет справедлива для каждой из точек системы. Следовательно, если рассмотреть точку системы с массой имеющую скорость то для нее будет

где — равнодействующие всех внешних и внутренних сил, действующих на данную точку.

Составляя такие уравнения для всех точек системы и складывая их почленно, получим

Но последняя сумма по свойству внутренних сил системы равна нулю. Тогда, учитывая равенство (30), найдем окончательно

Полученное уравнение выражает следующую теорему моментов для системы: производная повремени от главного момента количеств движения системы относительно некоторого неподвижного центра равна сумме моментов всех внешних сил системы относительно того же центра

Проектируя обе части равенства (35) на неподвижные оси , получим:

Уравнения (36) выражают теорему моментов относительно любой неподвижной оси.

Доказанной теоремой широко пользуются при изучении вращательного движения тела, а также в теории гироскопа и в теории удара. Но значение теоремы этим не ограничивается. В кинематике было показано, что движение твердого тела в общем случае слагается из поступательного движения вместе с некоторым полюсом и вращательного движения вокруг этого полюса. Если за полюс выбрать центр масс, то поступательная часть движения тела может быть изучена с помощью теоремы о движении центра масс, а вращательная — с помощью теоремы моментов. Это показывает важность теоремы для изучения движения свободного тела (летящий самолет, снаряд, ракета; см. § 132) и, в частности, для изучения плоскопараллельного движения (см. § 130).

Практическая ценность теоремы моментов состоит еще в том, что она, аналогично теореме об изменении количества движения, позволяет при изучении вращательного движения системы исключать из рассмотрения все наперед неизвестные внутренние силы.

Рис. 296

Теорема моментов относительно центра масс. Чтобы применять теорему моментов к изучению плоскопараллельного движения или движения свободного твердого тела, надо найти выражение этой теоремы для движения системы относительно центра масс. Пусть — неподвижные оси, по отношению к которым движется рассматриваемая механическая система, a — оси перемещающиеся поступательно вместе с центром масс С этой системы (рис. 296), при этом оси имеют ускорение равное ускорению центра масс. В § 91 было показано, что все уравнения динамики можно составлять в осях так же, как в неподвижных, если к действующим на каждую из точек системы силам прибавить переносную силу инерции (кориолисовы силы инерции в данном случае равны нулю, так как оси движутся поступательно). Следовательно, уравнение (35) в осях примет вид

(37)

поскольку сумма моментов внутренних сил относительно любого центра равна нулю. При этом величина вычисляется по формуле

где — скорости точек системы по отношению к осям

Найдем значение последней суммы в равенстве (37). По определению, Так как оси движутся поступательно, то для любой из точек системы следовательно, Тогда, вынося общий множитель за скобки и учитывая, что по формуле (Г) получим

так как точка С является в системе осей началом координат и . В результате равенство (37) дает

Сравнивая этот результат с уравнением (35), приходим к выводу, что для осей, движущихся поступательно вместе с центром масс системы, теорема моментов относительно центра масс сохраняет тот же вид, что и относительно неподвижного центра.

Точно так же для моментов относительно осей из (38) получаются уравнения, аналогичные уравнениям (36).

Заметим, что в любой другой подвижной системе отсчета будет или или не будут равны нулю кориолисовы силы инерции и уравнение моментов не будет иметь вид, совпадающий с (35).

<< Предыдущий параграф Следующий параграф >>
Оглавление