ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 112. ЗАКОН СОХРАНЕНИЯ КОЛИЧЕСТВА ДВИЖЕНИЯ

Из теоремы об изменении количества движения системы можно получить следующие важные следствия.

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (20) следует, что при этом Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2. Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ) равна нулю:

Тогда из уравнений (20) следует, что при этом Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить количество движения системы не могут. Рассмотрим некоторые примеры.

Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить количество движения системы, равное до выстрела кулю. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т. е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды, как внутренние, не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес

Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла ракетного двигателя). Действующие при этом силы давления будут силами внутренними и не могут изменить количество движения системы ракета — продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, направленное назад, то ракета получает при этом соответствующую скорость, направленную вперед. Величина этой скорости будет определена в § 114.

Обращаем внимание на то, что винтовой двигатель (предыдущий пример) сообщает объекту, например самолету, движение за счет отбрасывания назад частиц той среды, в которой он движется. В безвоздушном пространстве такое движение невозможно. Реактивный же двигатель сообщает движение за счет отброса назад масс, вырабатываемых в самом двигателе (продукты горения). Движение это в равной мере возможно и в воздухе, и в безвоздушном пространстве.

При решении задач применение теоремы позволяет исключить из рассмотрения все внутренние силы. Поэтому рассматриваемую систему надо стараться выбирать так, чтобы все (или часть) заранее неизвестных сил сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению поступательной скорости одной части системы надо определить скорость другой части. В частности, этот закон широко используется в теории удара.

Задача 126. Пуля массой , летящая горизонтально со скоростью и, попадает в установленный на тележке ящик с песком (рис 289). С какой скоростью начнет двигаться тележка после удара, если масса тележки вместе с ящиком равна

Решение. Будем рассматривать пулю и тележку как одну систему Это позволит при решении задачи исключить силы, которые возникают при ударе пули о ящик. Сумма проекций приложенных к системе внешних сил на горизонтальную ось Ох равиа нулю. Следовательно, или где - количество движения системы до удара; — после удара.

Так как до удара тележка неподвижна, то .

После удара тележка и пуля движутся с общей скоростью, которую обозначим через v. Тогда .

Приравнивая правые части выражений , найдем

Задача 127. Определить скорость свободного отката орудия, если вес откатывающихся частей равен Р, вес снаряда , а скорость снаряда по отношению к каналу ствола равна в момент вылета .

Рис. 289

Рис. 290

Решение. Для исключения неизвестных сил давления пороховых газов рассмотрим снаряд и откатывающиеся части как одну систему.

Пренебрегая за время движения снаряда в канале ствола сопротивлением откату и силами , которые очень малы по сравнению с силами давления пороховых газов, вызывающих откат, найдем, что сумма приложенных к системе внешних сил равна нулю (рис. 290; откатывающиеся вместе со стволом части на нем не показаны). Тогда , а так как до выстрела система неподвижна то и в любой момент времени

Обозначим скорость откатывающихся частей в конечный момент через v. Тогда абсолютная скорость снаряда в этот момент равна Следовательно,

Отсюда находим

Если бы была известна абсолютная скорость вылета снаряда то в равенство (а) вместо вошла бы сразу величина откуда

Знак минус в обоих случаях указывает, что направление v противоположно и.

Подчеркиваем, что при вычислении полного количества движения системы иадо учитывать абсолютные скорости движения ее частей.

<< Предыдущий параграф Следующий параграф >>
Оглавление