ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава X. ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

§ 48. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ

В кинематике, как и в статике, будем рассматривать все твердые тела как абсолютно твердые. Задачи кинематики твердого тела распадаются на две части:

1) задание движения и определение кинематических характеристик движения тела в целом; 2) определение кинематических характеристик движения отдельных точек тела.

Начнем с рассмотрения поступательного движения твердого тела.

Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.

Поступательное движение не следует смешивать с прямолинейным. При поступательном движении тела траектории его точек могут быть любыми кривыми линиями. Приведем примеры.

1. Кузов автомобиля на прямом горизонтальном участке дороги движется поступательно. При этом траектории его точек будут прямыми линиями.

2. Спарник АВ (рис. 131) при вращении кривошипов (VI и ) также движется поступательно (любая проведенная в нем прямая остается параллельной ее начальному направлению). Точки спарника движутся при этом по окружностям.

Рис. 131

Рис. 132

Свойства поступательного движения определяются следующей теоремой: при поступательном движении все точки тела описывают одинаковые (при наложении совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения.

Для доказательства рассмотрим твердое тело, совершающее поступательное движение относительно системы отсчета Охуz. Возьмем в теле две произвольные точки А и В, положения которых в момент времени t определяются радиусами-векторами (рис. 132); проведем вектор А В, соединяющий эти точки. Тогда

(35)

При этом длина АВ постоянна, как расстояние между точками твердого тела, а направление АВ остается неизменным, так как тело движется поступательно. Таким образом, вектор АВ во все время движения тела остается постоянным (). Вследствие этого, как видно из равенства (35) (и непосредственно из чертежа), траектория точки В получается из траектории точки параллельным смещением всех ее точек на постоянный вектор АВ. Следовательно, траектории точек А и В будут действительно одинаковыми (при наложении совпадающими) кривыми.

Для нахождения скоростей точек А и В продифференцируем обе части равенства (35) по времени. Получим

Но производная от постоянного вектора А В равна нулю. Производные же от векторов по времени дают скорости точек А и В. В результате находим, что

т. е. что скорости точек А и В тела в любой момент времени одинаковы и по модулю, и по направлению. Беря от обеих частей полученного равенства производные по времени, найдем:

Следовательно, ускорения точек А и В тела в любой момент времени тоже одинаковы по модулю и направлению.

Так как точки А и В были выбраны произвольно, то из найденных результатов следует, что у всех точек тела их траектории, а также скорости и ускорения в любой момент времени будут одинаковы. Таким обоазом, теорема доказана.

Рис. 133

Скорости и ускорения точек движущегося тела образуют векторные поля — поле скоростей и поле ускорений точек тела.

Из доказанного следует, что поля скоростей и ускорений точек тела, движущегося поступательно, будут однородными (рис. 133), но вообще не стационарными, т. е. изменяющимися во времени (см. § 32).

Из теоремы следует также, что поступательное движение твердого тела вполне определяется движением какой-нибудь одной его точки. Следовательно, изучение поступательного движения тела сводится к задаче кинематики точки, нами уже рассмотренной.

При поступательном движении общую для всех точек тела скорость v называют скоростью поступательного движения тела, а ускорение а — ускорением поступательного движения тела. Векторы можно изображать приложенными к любой точке тела.

Заметим, что понятия о скорости и ускорении тела имеют смысл только при поступательном движении. Во всех остальных случаях точки тела, как мы увидим, движутся с разными скоростями и ускорениями, и термины «скорость тела» или «ускорение тела» для этих движений теряют смысл.

<< Предыдущий параграф Следующий параграф >>
Оглавление