ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 44. НЕКОТОРЫЕ ЧАСТНЫЕ СЛУЧАИ ДВИЖЕНИЯ ТОЧКИ

Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки.

1. Прямолинейное движение. Если траекторией точки является прямая линия, то . Тогда и все ускорение точки равно одному только касательному ускорению:

Так как в данном случае скорость изменяется только численно, то отсюда заключаем, что касательное ускорение характеризует изменение числового значения скорости.

2. Равномерное криволинейное движение. Равномерным называется такое криволинейное движение точки, в котором числовое значение скорости все время остается постоянным: . Тогда и все ускорение точки равно одному только нормальному ускорению:

Вектор ускорения а направлен при этом все время по нормали к траектории точки.

Так как в данном случае ускорение появляется только за счет изменения направления скорости, то отсюда заключаем, что нормальное ускорение характеризует изменение скорости по направлению.

Найдем закон равномерного криволинейного движения. Из формулы (17) имеем Пусть в начальный момент времени точка находится от начала отсчета на расстоянии Тогда, беря от левой и правой частей равенства определенные интегралы в соответствующих пределах, получим

так как

Окончательно находим закон равномерного криволинейного движения точки в виде

Если в равенстве (25) положить , то s даст путь, пройденный точкой за время t. Следовательно, при равномерном движении путь, пройденный точкой, растет пропорционально времени, а скорость точки равна отношению пути ко времени:

3. Равномерное прямолинейное движение. В этом случае а значит, и что единственным движением, в котором ускорение тонки все время равно нулю, является равномерное прямолинейное движение.

4. Равнопеременное криволинейное движение. Равнопеременным называется такое криволинейное движение точки, при котором касательное ускорение остается все время постоянным: Найдем закон этого движения, считая, что при где — начальная скорость точки. Согласно первой из формул Так как то, беря от обеих частей последнего равенства интегралы в соответствующих пределах, получим

Формулу (26) представим в виде

Вторично интегрируя, найдем закон равнопеременного криволинейного движения точки

При этом скорость точки определяется формулой (26).

Если при криволинейном движении точки модуль скорости возрастает, то движение называется ускоренным, а если убывает, — замедленным.

Рис. 125

Рис. 126

Так как изменение модуля скорости характеризуется касательным ускорением, то движение будет ускоренным, если величины имеют одинаковые знаки (угол между векторами острый, рис. 125, а), и замедленным, если разные (угол между и тупой, рис. 125, б).

В частности, при равнопеременном движении, если в равенстве (26) о и а, имеют одинаковые знаки, движение будет равноускоренным, а если разные знаки, — равнозамедленным.

Формулы (25) — (27) определяют также законы равномерного или равнопеременного прямолинейного движения точки, если считать При этом в равенствах (26) и где а — числовое значение ускорения данной точки [см. формулу (23)].

5. Гармонические колебания. Рассмотрим прямолинейное движение точки, при котором ее расстояние от начала координат О изменяется со временем по закону

где постоянные величины.

Точка М (рис. 126) совершает при этом движении колебания между положениями Колебания, происходящие по закону (28), играют большую роль в технике. Они называются простыми гармоническими колебаниями. Величина А, равная наибольшему отклонению точки от центра колебаний О, называется амплитудой колебаний.

Легко видеть, что, начиная движение в момент из положения точка вновь придет в это положение в момент времени для которого

Промежуток времени в течение которого точка совершает одно полное колебание, называется периодом колебаний.

Беря производные от по t, найдем значения скорости и ускорения точки:

Следовательно, в этом движении и скорость, и ускорение точки изменяются с течением времени по гармоническому закону. По знакам v и а легко проверить, что когда точка движется к центру колебаний, ее движение является ускоренным, а когда от центра колебаний, — замедленным.

Аналогичные колебания происходят и при законе только движение в этом случае начинается из центра О.

Гармонические колебания по закону точка может совершать, двигаясь вдоль любой кривой (см., например, в § 46 задачу 51). Все сказанное о характере движения при этом сохранится с той лишь разницей, что последняя из формул (29) будет определять касательное ускорение точки; кроме него точка будет еще иметь нормальное ускорение

<< Предыдущий параграф Следующий параграф >>
Оглавление