Глава XXVIII. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ И ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ
§ 137. КЛАССИФИКАЦИЯ СВЯЗЕЙ
Введенное в § 3 понятие о связях охватывает не все их виды. Поскольку рассматриваемые даже методы решения задач механики применимы вообще к системам не с любыми связями, рассмотрим вопрос о связях и об их классификации несколько подробнее.
Связями называются любого вида ограничения, которые налагаются на положения и скорости точек механической системы и выполняются независимо от того, какие на систему действуют заданные силы. Рассмотрим, как классифицируются эти связи.
Связи, не изменяющиеся со временем, называются стационарными, а изменяющиеся со с временем — нестационарными.
Связи, налагающие ограничения на положения (координаты) точек системы, называются геометрическими, а налагающие ограничения еще и на скорости (первые производные от координат по времени) точек системы — кинематическими или дифференциальными.
Если дифференциальную связь можно представить как геометрическую, т. е. устанавливаемую этой связью зависимость между скоростями свести к зависимости между координатами, то такая связь называется интегрируемой, а в противном случае — неинтегрируемой.
Геометрические и интегрируемые дифференциальные связи называют связями голсномньши, а неинтегрируемые дифференциальные связи — неголономньши.
По виду связей механические системы тоже разделяют на голономные (с голономными связями) и неголономные (содержащие неголономные связи).
Наконец, различают связи удерживающее (налагаемые ими ограничения сохраняются при любом положении системы) и неудерживающие, которые этим свойством не обладают (от таких связей, как говорят, система может «освобождаться»). Рассмотрим примеры.
1. Все связи, рассмотренные в § 3, являются геометрическими (голономными) и притом стационарными. Движущийся лнфт, изображенный на рис. 271, а, будет для лежащего в нем груза, когда положение груза рассматривается по отношению к осям Оху, нестационарной геометрической связью (пол кабины, реализующий связь, изменяет со временем свое положение в пространстве).
2 Положение катящегося без скольжения колеса (см. рис. 328) определяется координатой
центра С колеса и углом поворота
. При качении выполняется условие
или 
Это дифференциальная связь, но полученное уравнение интегрируется и дает
, т. е. сводится к зависимости между координатами. Следовательно, наложенная связь голономная.
Заметим, что эту связь можно сразу считать геометрической, подчиняющей координаты зависимости
Но тогда отсюда найдем, что одновременно и
, т. е. что связь является и кинематической.
3. В отличие от колеса для шара, катящегося без скольжения по шероховатой плоскости, условие того, что скорость точки шара, касающаяся плоскости, равна нулю, не может быть сведено (когда центр шара движется не прямолинейно) к каким-нибудь зависимостям между координатами, определяющими положение шара. Это пример негалоиомной связи. Другой пример дают связи, налагаемые на управляемое движение. Например, если на движение точки (ракеты) налагается условие (связь), что ее скорость в любой момент времени должна быть направлена в другую движущуюся точку (самолет), то это условие к какой-нибудь зависимости между координатами тоже не сводится и связь является неголономной.
4. В § 3 связи, показанные на рис.
являются, удерживающими, а на рис. 8 и 9 — неудерживающими (на рис. 8, а шарик может покинуть поверхность, а на рис. 9 — перемещаться в сторону точки А, сминая нить). С учетом особенностей неудерживающих связей мы сталкивались в задачах 108, 109 (§ 90) и в задаче 146 (§ 125).