ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 127. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Для потенциального силового поля можно ввести понятие о потенциальной энергии как о величине, характеризующей «запас работы», которым обладает материальная точка в данном пункте силового поля. Чтобы сравнивать между собой эти «запасы работы», нужно условиться о выборе нулевой точки О, в которой будем условно считать «запас работы» равным нулю (выбор нулевой точки, как и всякого начала отсчета, производится произвольно). Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

Из определения следует, что потенциальная энергия П зависит от координат х, у, z точки М, т. е. что

Будем в дальнейшем считать нулевые точки для функций совпадающими. Тогда и по формуле значение силовой функции в точке М поля. Таким образом,

т. е. потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

Отсюда видно, что при рассмотрении всех свойств потенциального силового поля вместо силовой функции можно пользоваться понятием потенциальной энергии. В частности, работу потенциальной силы вместо равенства (57) можно вычислять по формуле

Следовательно, работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном ее положениях.

Выражения потенциальной энергии для известных нам потенциальных силовых полей можно найти из равенств (59) - (59”), учитывая, что . Таким образом, будет:

1) для поля силы тяжести (ось z вертикально вверх)

2) для поля силы упругости (линейного)

3) для поля силы тяготения

Потенциальная энергия системы определяется так же, как и для одной точки, а именно: потенциальная энергия П механической системы в данном ее положении равна работе, которую произведут силы поля при перемещении системы из данного положения в нулевое,

При наличии нескольких полей (например, полей сил тяжести и сил упругости) для каждого поля можно брать свое нулевое положение.

Зависимость между потенциальной энергией и силовой функцией будет такой же, как и для точки, т. е.

Закон сохранения механической энергии. Допустим, что все действующие на систему внешние и внутренние силы потенциальны. Тогда

Подставляя это выражение работы в уравнение (50), получим для любого положения системы: или

Следовательно, при движении под действием потенциальных сил сумма кинетической и потенциальной энергий системы в каждом ее положении остается величиной постоянной. В этом и состоит закон сохранения механической энергии, являющийся частным случаем общего физического закона сохранения энергии.

Величина называется полной механической энергией системы, а сама механическая система, для которой выполняется закон консервативной системой.

Пример. Рассмотрим маятник (рис. 320), отклоненный от вертикали на угол и отпущенный без начальной скорости. Тогда в начальном его положении , где Р — вес маятника; z — координата его центра тяжести. Следовательно, если пренебречь всеми сопротивлениями, то в любом другом положении будет или

Рис. 320

Таким образом, выше положения центр тяжести маятника подняться не может. При опускании маятника его потенциальная энергия убывает, а кинетическая растет, при подъеме, наоборот, потенциальная энергия растет, а кинетическая убывает.

Из составленного уравнения следует, что

Таким образом, угловая скорость маятника в любой момент времени зависит только от положения, занимаемого его центром тяжести, и в данном положении всегда принимает одно и то же значение. Такого рода зависимости имеют место только при движении под действием потенциальных сил.

Диссипативные системы. Рассмотрим механическую систему, на которую кроме потенциальных сил действуют неизбежные в земных условиях силы сопротивления (сопротивление среды, внешнее и внутреннее трение). Тогда из уравнения (50) получим: или

где - работа сил сопротивления. Так как силы сопротивления направлены против движения, то величина всегда отрицательная Следовательно, при движении рассматриваемой механической системы происходит убывание или, как говорят, диссипация (рассеивание) механической энергии. Силы, вызывающие эту диссипацию, называют диссипативными силами, а механическую систему, в которой происходит диссипация энергии, — диссипативной системой.

Например, у рассмотренного выше маятника (рис. 320) благодаря трению в оси и сопротивлению воздуха механическая энергия будет) со временем убывать, а его колебания будут затухать; это диссипативная система.

Полученные результаты не противоречат общему закону сохранения энергии, так как теряемая диссипативной системой механическая энергия переходит в другие формы энергии, например в теплоту.

Однако и при наличии сил сопротивления механическая система может не быть диссипативной, если теряемая энергия компенсируется притоком энергии извне. Например, отдельно взятый маятник, как мы видели, будет диссипативной системой. Но у маятника часов потеря энергии компенсируется периодическим притоком энергии извне за счет опускающихся гирь или заводной пружины, и маятник будет совершать незатухающие колебания, называемые автоколебаниями.

От вынужденных колебаний (см. § 96) автоколебания отличаются тем, что они происходят не под действием зависящей от времени возмущающей силы и что их амплитуда, частота и период определяются свойствами самой системы (у вынужденных колебаний амплитуда, частота и период зависят от возмущающей силы).

<< Предыдущий параграф Следующий параграф >>
Оглавление