ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 86. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ ЦЕНТРАЛЬНОЙ СИЛЫ. ЗАКОН ПЛОЩАДЕЙ

Центральной называется сила, линия действия которой проходит все время через данный центр О. Примером такой силы является сила притяжения планеты к Солнцу или спутника к Земле.

Рассмотрим, пользуясь уравнением (37), как будет двигаться точка М (рис. 226) под действием центральной силы F. Так как в данном случае , поскольку масса постоянна, т. е. вектор постоянен и по модулю, и по направлению.

Напомним, что вектор направлен перпендикулярно плоскости, проходящей через векторы . Следовательно, если вектор имеет все время постоянное направление, то радиус-вектор точки М и вектор ее скорости и должны все время лежать в одной и той же плоскости. Отсюда заключаем, что траектория точки М будет плоской кривой. Кроме того, одновременно

Рис. 226

Таким образом, при движении под действием центральной силы точка двигается по плоской кривой, а ее скорость v изменяется так, что момент вектора v относительно центра О остается постоянным

Последний результат имеет наглядное геометрическое истолкование. Так как , где — площадь элементарною треугольника ОММ', то, следовательно,

Величина определяет скорость, с которой растет площадь, ометаемая радиусом-вектором ОМ при движении точки М, и называется секторной скоростью точки. В рассматриваемом случае эта скорость постоянна:

(39)

Таким образом, при движении под действием центральной силы тонка движется по плоской кривой с постоянной секторной скоростью, т. е. так, что радиус-вектор тонки в любые разные промежутки времени ометает равные площади (закон площадей). Этот закон имеет место при движении планет или спутников и выражает собой один из законов Кеплера.

Рис. 227

Пример. Орбитой планеты, движущейся под действием силы притяжения Солнца, является эллипс, причем Солнце находится в одном из фокусов С эллипса (рис. 227). Так как сила притяжения является центральной, то при движении имеет место закон площадей. Поэтому в ближайшей к Солицу точке орбиты П (перигелий) скорость планеты будет наибольшей, а в наиболее удаленной от Солнца точке А (афелий) скорость будет наименьшей. Этот результат следует из уравнения (39), которое для точек А и П дает . К такому же выводу можно прийти, если учесть, что площади пунктирно заштрихованных на рис. 227 секторов, ометаемых за одинаковые промежутки времени, должны быть равны, следовательно, за одно и то же время планета вблизи точки П должна пройти больший путь, чем вблизи А.

Аналогичный результат имеет место при движении спутника.

<< Предыдущий параграф Следующий параграф >>
Оглавление