ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. ИСХОДНЫЕ ПОЛОЖЕНИЯ СТАТИКИ

При изложении статики можно идти двумя путями: 1) исходить из уравнений, которые получаются в динамике как следствия основных законов механики (см. § 120); 2) излагать статику независимо от динамики исходя из некоторых общих законов механики и положений, называемых аксиомами или принципами статики, хотя по существу они являются не независимыми аксиомами, а следствиями тех же основных законов механики (см. § 120).

В учебных курсах, как и в данном, обычно идут вторым путем, так как по ряду причин оказывается необходимым начинать изучение механики со статики, т. е. до того, как будет изложена динамика. Положения (или аксиомы), из которых при этом исходят, можно сформулировать следующим образом.

1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю и направлены вдоль одной прямой в противоположные стороны (рис. 2).

Рис. 2

Рис. 3

2. Действие данной системы сил на абсолютно твердое тело не изменяется, если к ней прибавить или от нее отнять уравновешенную систему сил.

Иными словами это означает, что две системы сил, отличающиеся на уравновешенную систему, эквивалентны друг другу.

Следствие: действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела.

В самом деле, пусть на твердое тело действует приложенная в точке А сила F (рис. 3). Возьмем на линии действия этой силы произвольную точку В и приложим в ней две уравновешенные силы и такие, что От этого действие силы F на тело не изменится. Но силы F и также образуют уравновешенную систему, которая может быть отброшена . В результате на тело будет действовать только одна сила равная F, но приложенная в точке В.

Таким образом, вектор, изображающий силу F, можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Полученный результат справедлив только для сил, действующих на абсолютно твердое тело. При инженерных расчетах им можно пользоваться лишь тогда, когда определяются условия равновесия той или иной конструкции и не рассматриваются возникшие в ее частях внутренние усилия.

Например, изображенный на рис. 4, а стержень АВ будет находиться в равновесии, если При переносе точек приложения обеих сил в какую-нибудь стержня (рис. 4, б) или при переносе точки приложения силы в точку В, а силы в точку А (рис. 4, е) равновесие не нарушается. Однако внутренние усилия будут в каждом из рассматриваемых случаев разными. В первом случае стержень под действием приложенных сил растягивается, во втором случае он не напряжен, а в третьем стержень будет сжиматься.

Следовательно, при определении внутренних усилий переносить точку приложения силы вдоль линии действия нельзя.

Еще два исходных положения относятся к общим законам механики.

Закон параллелограмма сил: две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах.

Рис. 4

Рис. 5

Рис. 6

Вектор R, равный диагонали параллелограмма, построенного на векторах (рис. 5), называется геометрической суммой векторов

Следовательно, закон параллелограмма сил можно еще сформулировать так: две силы, приложенные к телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме этих сил и приложенную в той же точке.

В дальнейшем следует различать понятия суммы сил и их равнодействующей. Поясним это примером. Рассмотрим две силы (рис. 6), приложенные к телу в точках А и В. Показанная на рис. 6 сила Q равна геометрической сумме сил и как диагональ соответствующего параллелограмма. Но сила Q не является равнодействующей этих сил, так как нетрудно понять, что одна сила Q не может заменить действие сил на данное тело, где бы она ни была приложена.

В дальнейшем будет еще строго доказа но задача 38), что эти две силы не имеют равнодействующей.

Закон равенства действия и противодействия: при всяком действии одного материального тела на другое имеет место такое же численно, но противоположное по направлению противодействие.

Этот закон является одним из основных законов механики. Из него следует, что если тело А действует на тело В с некоторой силой F, то одновременно тело В действует на тело А с такой же по модулю и направленнойдоль той же прямой, но в противоположную сторону силой (рис. 7). Заметим, что силы F и F, как приложенные к разным телам, не образуют уравновешенную систему сил.

Рис. 7

Свойство внутренних сил. Согласно данному закону при взаимодействии две любые части тела (или конструкции) действуют друг на друга с равными по модулю и противоположно направленными силами. Так как при изучении условий равновесия тело рассматривается как абсолютно твердое, то все внутренние силы образуют при этом уравновешенную систему сил, которую можио отбросить. Следовательно, при изучении условий равновесия тела (конструкции) необходимо учитывать только внешние силы, действующие на это тело (конструкцию). В дальнейшем, говоря о действующих силах, мы будем подразумевать, если не сделано специальной оговорки, что речь идет только о внешних силах.

Еще одним исходным положением является принцип отвердевания: равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сваренными друг с другом. Так как на покоящееся тело до и после отвердевания действует одна и та же система сил, то данный принцип можно еще высказать в такой форме: при равновесии силы, действующие на любое изменяемое (деформируемое) тело или изменяемую конструкцию, удовлетворяют тем же условиям, что и для тела абсолютно твердого; однако для изменяемого тела эти условия, будучи необходимыми, могут не быть достаточными (см. § 120).

Например, для равновесия гибкой нити под действием двух сил, приложенных к ее концам, необходимы те же условия, что и для жесткого стержня (силы должны быть равны по модулю и направлены вдоль нити в разные стороны).

Но эти условия не будут достаточными. Для равновесия нити требуется еще, чтобы приложенные силы были растягивающими, т. е. направленными так, как на рис. 4, а.

Принцип отвердевания широко используется в инженерных расчетах. Он позволяет при составлении условий равновесия рассматривать любое изменяемое тело (ремень, трос, цепь и т. п.) или любую изменяемую конструкцию как абсолютно жесткие и применять к ним методы статики твердого тела. Если полученных таким путем уравнений для решения задачи оказывается недостаточно, то дополнительно составляют уравнения, учитывающие или условия равновесия отдельных частей конструкции, или их деформации (задачи, требующие учета деформаций, решаются в курсе сопротивления материалов).

<< Предыдущий параграф Следующий параграф >>
Оглавление