ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 51. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ВРАЩАЮЩЕГОСЯ ТЕЛА

Установив в предыдущих параграфах характеристики движения всего тела в делом, перейдем к изучению движения отдельных его точек.

1. Скорости точек тела. Рассмотрим какую-нибудь точку М твердого тела, находящуюся на расстоянии h от оси вращения (см. рис. 134).

При вращении тела точка М будет описывать окружность радиуса h, плоскость которой перпендикулярна оси вращения, а центр С лежит на самой оси. Если за время происходит элементарный поворот тела на угол то точка М при этом совершает вдоль своей траектории элементарное перемещение Тогда числовое значение скорости точки будет равно отношению т. е.

или

Скорость v в отличие от угловой скорости тела называют иногда еще линейной или окруокной скоростью точки М.

Таким образом, числовое значение скорости точки вращающегося твердого тела равно произведению угловой скорости тела на расстояние от этой точки до оси вращения.

Направлена скорость по касательной к описываемой точкой окружности или перпендикулярно плоскости, проходящей через ось вращения и точку М.

Так как для всех точек тела со имеет в данный момент времени одно и то же значение, то из формулы (44) следует, что скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения. Поле скоростей точек вращающегося твердого тела имеет вид, показанный на рис. 136.

Рис. 136

Рис. 137

2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами

В нашем случае . Подставляя значение v из равенства (44) в выражения получим:

или окончательно:

Касательная составляющая ускорения направлена по касательной к траектории (в сторону движения при ускоренном вращении тела и в обратную сторону при замедленном); нормальная составляющая всегда направлена по радиусу МС к оси вращения (рис. 137).

Полное ускорение точки М будет или

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом который вычисляется по формуле [вторая из формул (22)]. Подставляя сюда значения из равенств (45), получаем

Так как имеют в данный момент времени для всех точек тела одно и то же значение, то из формул (46) и (47) следует, что ускорения всех точек вращающегося твердого тела пропорциональны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол , с радиусами описываемых ими окружностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис. 138.

Рис. 138

Рис. 139

Формулы (44) — (47) позволяют определить скорость и ускорение любой точки тела, если известен закон вращения тела и расстояние данной точки от оси вращения. По этим же формулам можно, зная движение одной точки тела, найти движение любой другой его точки, а также характеристики движения всего тела в целом.

3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов v и а, проведем из произвольной точки О оси АВ радиус-вектор точки М (рис. 139). Тогда а и по формуле (44)

Таким образом, - модуль векторного произведения равен модулю скорости точки М. Направления векторов тоже совпадают (оба они перпендикулярны плоскости ОМВ) и размерности их одинаковы. Следовательно,

т. е. вектор скорости любой точки вращающегося тела равен векторному произведению угловой скорости тела на радиус-вектор этой точки.

Формулу (48) называют формулой Эйлера.

Беря от обеих частей равенства (48) производные по времени, получим

или

Формула (49) определяет вектор ускорения любой точки вращающегося тела.

Вектор направлен, как и вектор , т. е. по касательной к траектории точки Вектор же направлен вдоль МС, т. е. по нормали к траектории точки М, а так как Учитывая все эти результаты, а также формулы (45), заключаем, что

Задача 54. Вал, делающий об/мин, после выключения двигателя начинает вращаться равнозамедленно и останавливается через с. Определить, сколько оборотов сделал вал за это

Решение. Так как вал вращается равиозамедленно, то для него, считая будет

Начальной угловой скоростью при замедленном вращении является та, которую вал имел до выключения двигателя. Следовательно,

В момент остановки при угловая скорость вала. Подставляя эти вначения во второе из уравнений (а), получаем:

Если обозначить число сделанных валом за время оборотов через N (не смешивать с n; — угловая скорость), то угол поворота за то же время будет равен Подставляя найденные значения в первое из уравнений (а), получим

откуда

Задача 55. Маховик радиусом пращаегся равномерно, делая об/мин. Определить скорость и ускорение точки, лежащей на ободе маховика.

Решение. Скорость точки обода где угловая скорость w должна быть выражена в радианах в секунду. Тогда

Далее, так как то и, следовательно,

Ускорение точки направлено в данном случае к оси вращения.

Задача 56. Полагая, что при разгоне маховик вращается по закону

определить значения постоянных коэффициентов и k из условий, что при должно быть и что предельная угловая скорость, до которой разгоняется маховик а его угловое ускорение при разгоне не должно превышать значения

Найти также, какое ускорение будет при этом у точек обода маховика в момент времени , если радиус маховика

Решение. Из уравнения (а) видно, что при если

Далее из уравнения (а) находим, что Следовательно, при если

При этих значениях уравнение (а) примет вид

Отсюда находим

Первое из равенств (в) показывает, что со временем растет и при стремится к предельному значению следовательно, Из второго же равенства видно, что со временем убывает, стремясь к нулю, а наибольшее чение имеет при следовательно,

Но по условиям задачи Тогда должно быть откуда При этих значениях k и равенство (б) дает окончательно следующий закон вращения маховика:

Тогда, что видно и из равенств (в), будет

момента времени 1 с, учитывая, что получим Следовательно, в этот момент времени

Задача 57. Груз В (рис. 140) приводит во вращение вал радиусом и сидящую на одной оси с валом шестерню ральуссч Движение груза начинается из состояния покоя и происходит с постоянным ускорением а. Определить, по какому закону будет при этом вращаться находящаяся в зацеплении с шестерней шестерня 2 радиуса .

Рис. 140

Решение. Так как груз В начинает двигаться без начальной скорости, то его скорость в любой момент времени t равна Эту скорость будут иметь и точки обода вала. Но, с другой стороны, скорости этих точек равны где общая для вала и шестерни 1 угловая скорость. Следовательно,

Теперь найдем Так как скорость точки сцепления С должна быть одной и той же для обеих шестерен, то откуда

Итак, угловая скорость шестерни 2 растет пропорционально времени. Учитывая, что где — угол поворота шестерни 2, получим

Отсюда, беря от обеих частей интегралы и считая, что при угол найдем окончательно закон равноускоренного вращения шестерни 2 в виде

<< Предыдущий параграф Следующий параграф >>
Оглавление