ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 69. СЛОЖЕНИЕ ВРАЩЕНИЙ ВОКРУГ ДВУХ ПАРАЛЛЕЛЬНЫХ ОСЕЙ

Рассмотрим случай, когда относительное движение тела является вращением с угловой скоростью вокруг оси укрепленной на кривошипе (рис. 198, а), а переносное — вращением кривошипа вокруг оси параллельной с угловой скоростью Тогда движение тела будет плоскопараллельным по отношению к плоскости, перпендикулярной осям. Здесь возможны три частных случая.

1. Вращения направлены в одну сторону. Изобразим сечение S тела плоскостью, перпендикулярной осям (рис. 198, б). Следы осей в сечении 5 обозначим буквами А и В. Легко видеть, что точка А, как лежащая на оси получает скорость только от вращения вокруг оси ВЬ, следовательно, Точно так же

Рис. 198

При этом векторы параллельны друг другу (оба перпендикулярны АВ) и направлены в разные стороны. Тогда точка С (см. § 56, рис. 153, б) является мгновенным центром скоростей а следовательно, ось параллельная осям и ВЬ, является мгновенной осью вращения тела.

Для определения угловой скорости со абсолютного вращения тела вокруг оси и положения самой оси, т. е. точки С, Воспользуемся равенством [см. § 56, формула (57)]

Последний результат получается из свойств пропорции. Подставляя в эти равенства найдем окончательно:

Итак, если тело участвует одновременно в двух направленных в одну сторону вращениях вокруг параллельных осей, то его результирующее движение будет мгновенным вращением с абсолютной угловой скоростью вокруг мгновенной оси, параллельной данным; положение этой оси определяется пропорциями (98).

С течением времени мгновенная ось вращения меняет свое положение, описывая цилиндрическую поверхность.

2. Вращения направлены в разные стороны. Изобразим опять сечение S тела (рис. 199) и допустим для определенности, что шсоз. Тогда, рассуждая, как в предыдущем случае, найдем, что скорости точек А и В будут численно равны: при этом параллельны друг другу и направлены в одну сторону.

Тогда мгновенная ось вращения проходит через точку С (рис. 199), причем

Последний результат тоже получается из свойств пропорции. Подставляя в эти равенства значения найдем окончательно:

Итак, в этом случае результатирующее движение также является мгновенным вращением с абсолютной угловой скоростью вокруг оси положение которой определяется пропорциями (100).

3. Пара вращений. Рассмотрим частный случай, когда вращения вокруг параллельных осей направлены в разные стороны (рис. 200), но по модулю .

Рис. 199

Рис. 200

Рис. 201

Такая совокупность вращений называется парой вращений, а векторы образуют пару угловых скоростей. В этом случае получаем, Тогда (см. § 56, рис. 153, а) мгновенный центр скоростей находится в бесконечности и все точки тела в данный момент времени имеют одинаковые скорости .

Следовательно, результатирующее движение тела будет поступательным (или мгновенно поступательным) движением со скоростью, численно равной и направленной перпендикулярно плоскости, проходящей через векторы направление вектора v определяется так же, как в статике определялось направление момента пары сил (см. § 9). Иначе говоря, пара вращений эквивалентна поступательному (или мгновенно поступательному) движению со скоростью v, равной моменту пары угловых скоростей этих вращений.

Примером такого движения является поступательное движение велосипедной педали DE относительно рамы велосипеда (рис. 201), являющееся результатом относительного вращеиия педали вокруг оси А, укрепленной на кривошипе В А, и переносного вращения кривошипа ВА вокруг оси В.

Угловые скорости этих вращений направлены в разные стороны, а по модулю равны друг другу, так как в любой момент времеии угол поворота педали относительно кривошипа ВА равен углу поворота кривошипа. Скорость поступательного движения педали

Из того, что пара вращений эквивалентна поступательному движению, следует и обратный вывод: поступательное движение твердого тела эквивалентно паре вращений, у которой момент угловых скоростей этих вращений равен поступательной скорости тела.

<< Предыдущий параграф Следующий параграф >>
Оглавление