ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 30. РАВНОВЕСИЕ ПРОИЗВОЛЬНОЙ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ. СЛУЧАЙ ПАРАЛЛЕЛЬНЫХ СИЛ

Необходимые и достаточные условия равновесия любой системы сил выражаются равенствами (см. § 13). Но векторы R и равны только тогда, когда т. е. когда действующие силы, согласно формулам (49) и (50), будут удовлетворять условиям:

Таким образом, для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из трех координатных осей и суммы их моментов относительно этих осей были равны нулю.

Равенства (51) выражают одновременно условия равновесия твердого тела, находящегося под действием любой пространственной системы сил.

Если на тело кроме сил действует еще пара, заданная ее моментом , то при этом вид первых трех из условий (51) не изменится (сумма проекций сил пары на любую ось равна нулю), а последние три условия примут вид:

Случай параллельных сил. В случае, когда все действующие на тело силы параллельны друг другу, можно выбрать координатные оси так, что ось будет параллельна силам (рис. 96). Тогда проекции каждой из сил на оси и их моменты относительно оси z будут равны нулю и система (51) даст три условия равновесия:

Остальные равенства обратятся при этом в тождества вида

Следовательно, для равновесия пространственной системы параллельных сил необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную силам, и суммы их моментов относительно двух других координатных осей были равны нулю.

Рис. 96

Решение задач. Порядок решения задач здесь остается тем же, что и в случае плоской систсмьгсил. Установив, равновесие какого тела (объекта) рассматривается, надо изобразить все действующие на него внешние силы (и заданные, и реакции связей) и составить условия равновесия этих сил. Из полученных уравнений и определяются искомые величины.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были им перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно координатных осей.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекомендуется изобразить на вспомогательном чертеже проекцию рассматриваемого тела (вместе с силой) на плоскость, перпендикулярную этой оси.

В тех случаях, когда при вычислении момента возникают затруднения в определении проекции силы на соответствующую плоскость или плеча этой проекции, рекомендуется разложить силу на две взаимно перпендикулярные составляющие (из которых одна параллельна какой-нибудь координатной оси), а затем воспользоваться теоремой Вариньона (см. задачу 36). Кроме того, можно вычислять моменты аналитически по формулам (47), как, например, в задаче 37.

Задача 39. На прямоугольной плите со сторонами а и b лежит груз. Центр тяжести плиты вместе с грузом находится в точке D с координатами (рис, 97). Один из рабочих удерживает плиту за угол А. В каких точках В я Е должны поддерживать плиту двое других рабочих, чтобы силы, прикладываемые каждым из удерживающих плиту, были одинаковы.

Решение. Рассматриваем равновесие плиты, которая является свободным телом, находящимся в равновесии под действием четырех параллельных сил где Р — сила тяжести. Составляем для этих сил условия равновесия (53), считая плиту горизонтальной и проводя оси так, как показано на рис. 97. Получим:

По условиям задачи должно быть Тогда из последнего уравнения Подставляя это значение Р в первые два уравнения, найдем окончательно

Решение возможно, когда При а при будет Когда точка D в центре плиты,

Рис. 97

Рис. 98

Задача 40. На горизонтальный вал, лежащий в подшипниках А и В (рис. 98) насажены перпендикулярно оси вала шкив радиусом см и барабан радиусом . Вал приводится во вращение ремнем, накинутым на шкив; при этом равномерно поднимается груз весом , привязанный к веревке, которая наматывается на барабан. Пренебрегая весом вала, барабана и шкива, определить реакции подшипников А и В и натяжение ведущей ветви ремня, если известно, что оно вдвое больше иатяжения ведомой ветви. Дано: см, см,

Решение. В рассматриваемой задаче при равномерном вращении вала действующие на него силы удовлетворяют условиям равновесия (51) (это будет доказано в § 136). Проведем координатные оси (рис. 98) и изобразим действующие на вал силы: натяжение F веревки, по модулю равное Р, натяжения ремня и составляющие реакций подшиппиков.

Для составления условий равновесия (51) вычисляем предварительно и вносим в таблицу значения проекций всех сил на координатные оси и их моментов относительно этих осей.

Теперь составляем условия равновесия (51); так как получим:

Из уравнений (III) и (IV) находим сразу, учитывая, что

Далее, из уравнения (V) получаем:

Подставляя найденные значения в остальные уравнения, найдем;

И окончательно

Задача 41. Прямоугольная крышка весом , образующая с вертикалью угол закреплена на горизонтальной оси АВ в точке В цилиндрическим подшипником, а в точке А — подшипником с упором (рис. 99). Крышка удерживается в равновесии веревкой DE и оттягивается перекинутой через блок О иитью с грузом весом на конце (линия КО параллельна АВ). Дано: Определить натяжение веревки DE и реакции подшипников А и В.

Решение. Рассмотрим равновесие крышки. Проведем координатные оси, беря начало в точке В (при этом сила Т пересечет оси что упростит вид уравнений моментов).

Затем изобразим все действующие на крышку заданные силы и реакции связей: силу тяжести Р, приложенную в центре тяжести С крышки, силу Q, равную по модулю Q, реакцию Т веревки и реакции подшипников А и В (рис. 99; показанный пунктиром вектор М к данной задаче не относится). Для составления условий равновесия введем угол и обозначим Подсчет моментов некоторых сил пояснен на вспомогательных рис. 100, а, б.

Рис. 100

На рис. 100, а показан вид в проекции на плоскость с положительного конца оси

Этот чертеж помогает вычислять моменты сил Р и Т относительно оси Из него видно, что проекции этих сил на плоскость (плоскость, перпендикулярную ) равны самим силам, а плечо силы Р относительно точки В равно ; плечо же силы Т относительно этой точки равно

На рис. 100, б показан вид в проекции на плоскость с положительного конца оси у.

Этот чертеж (вместе с рис. 100, а) помогает вычислять моменты сил Р и относительно оси у. Из него видно, что проекции этих сил на плоскость равны самим силам, а плечо силы Р относительно точки В равно плечо же силы Q относительно этой точки равно или , что видно из рис. 100, а.

Составляя с учетом сделанных пояснений условия равновесия (51) и полагая одновременно получим:

(I)

Учитывая, что найдем из уравнений (I), (IV), (V), (VI):

Подставляя эти значения в уравнения (II) и (III), получим:

Окончательно,

Задача 42. Решить задачу 41 для случая, когда на крышку дополнительно действует расположенная в ее плоскости пара с моментом поворот пары направлен (если смотреть на крышку сверху) против хода часовой стрелки.

Решение. В дополнение к действующим на крышку силам (см. рис. 99) изображаем момент М пары в виде вектора, перпендикулярного к крышке и приложенного в любой точке, например в точке А. Его проекции на координатные оси: . Тогда, составляя условия равновесия (52), найдем, что уравнения (I) — (IV) останутся такими же, как в предыдущей задаче, а последние два уравнения имеют вид:

(VI)

Заметим, что этот же результат можно получить, не составляя уравнения в виде (52), а изобразив пару двумя силами, направленными, например, вдоль линий АВ и КО (при этом модули сил будут равны ), и пользуясь затем обычными условиями равновесия.

Решая уравнения (I) — (IV), (V), (VI), найдем результаты, аналогичные полученным в задаче 41, с той лишь разницей, что во все формулы вместо величины войдет . Окончательно получим:

Задача 43. Горизонтальный стержень АВ прикреплен к стене сферическим шарниром А и удерживается в положении, перпендикулярном стене, растяжками КЕ и CD, показанными на рис. 101, а. К концу В стержня подвешен груз весом . Определить реакцию шарнира А и натяжения растяжек, если Весом стержня пренебречь.

Рис. 101

Решение. Рассмотрим равновесие стержня. На пего действуют сила Р и реакции Проведем координатные оси и составим условия равновесия (51). Для нахождения проекций и моментов силы разложим ее на составляющие . Тогда по теореме Вариньона , так как так как

Вычисление моментов сил относительно оси пояснено вспомогательным чертежом (рис. 101, б), на котором дан вид в проекции на плоскость

Теперь составляем уравнения (51). Предварительно заметим, что так как все силы пересекают ось у, то их моменты относительно этой оси равны пулю; поэтому уравнений равновесия останется только пять:

или, заменяя их значениями:

Решая эту систему уравнений, найдем окончательно . Составляющие ХА и имеют, таким образом, направления, противоположные покачанным на чертеже.

Задача 44. Горизонтальная плита ABC, имеющая форму равностороннего треугольника со стороной а, закреплена с помощью шести стержней так, как показано на рис. 102; при этом каждый из наклонных стержней образует с горизонтальной плоскостью угол . В плоскости плиты действует пара с моментом М. Пренебрегая весом плиты, определить усилия в стержнях.

Рис. 102

Решение. Рассматривая равновесие плиты, изображаем вектор М момента действующей на нее пары сил и реакции стержней; реакции направляем так, как если бы все стержни были растянуты (считаем, что плита отрывается от стержней). При равновесии сумма моментов всех действующих на тело сил и пар [см. равенства (52)] относительно любой оси должна быть равна нулю.

Направляя ось вдоль стержня 1 и составляя уравнение моментов относительно этой оси, получим при

где — высота треугольника. Отсюда иаходим

Составляя уравнения моментов относительно осей, которые направляем рдоль стержней 2 и 3, получим такие же результаты для сил

Теперь составим уравнение моментов относительно оси направленной вдоль стороны АВ треугольника. Получим, учитывая, что

Отсюда, так как находим

Такие же значения получим для величин составляя уравнения моментов относительно осей АС и СВ.

Окончательно при будет:

Полученные результаты показывают, что действием заданной пары вертикальные стержни растягиваются, а наклонные сжимаются.

Из рассмотренного примера видно, что при решении задач не всегда обязательно пользоваться условиями равновесия (51). Для пространственной системы сил, как и для плоской, существует несколько форм условий равновесия, из которых форма (51) является основной.

В частности, можно доказать, что для равновесия пространственной системы сил необходимо и достаточно, чтобы были равны нулю суммы моментов всех сил относительно шести осей, направленных или по ребрам какой-нибудь треугольной пирамиды, или по боковым ребрам и ребрам основания треугольной призмы.

Последние условия и были использованы при решении задачи 44.

<< Предыдущий параграф Следующий параграф >>
Оглавление