ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 150. МАЛЫЕ СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ

Колебания системы с несколькими степенями свободы, имеющие важные практические приложения, отличаются от колебаний системы с одной степенью свободы рядом существенных особенностей. Чтобы дать представление об этих особенностях, рассмотрим случай свободных колебаний системы с двумя степенями свободы.

Пусть положение системы определяется обобщенными координатами и при система находится в устойчивом равновесии. Тогда кинетическую и потенциальную энергии системы с точностью до квадратов малых величин можно найти так же, как были найдены равенства (132), (133), и представить в виде:

где инерционные коэффициенты и квазиупругие коэффициенты — величины постоянные. Если воспользоваться двумя уравнениями Лагранжа вида (131) и подставить в них эти значения Т и П, то получим следующие дифференциальные уравнения малых колебаний системы с двумя степенями свободы

Будем искать решение уравнений (145) в виде:

где A, B, k, a — постоянные величины. Подставив эти значения в уравнения (145) и сократив на получим

Чтобы уравнения (147) давали для А и В решения, отличные от иуля, определитель этой системы должен быть равен нулю или, иначе, коэффициенты при A и В в уравнениях должны быть пропорциональны, т. е.

Отсюда для определения получаем следующее уравнение, называемое уравнением частот.

(149)

Корни этого уравнения вещественны и положительны; это доказывается математически, но может быть обосновано и тем, что иначе не будут вещественны уравнения (145) не будут иметь решений вида (146), чего для системы, находящейся в устойчивом равновесии, быть не может (после возмущений она должна двигаться вблизи положения

Определив нз (149) , найдем две совокупности частных решений вида (146). Если учесть, что согласно эти решения будут:

где и — значения, которые я получает из (148) при и соответственно.

Колебания, определяемые уравнениями (150) и (151), называются главными колебаниями, а их частоты и кг — собственными частотами системы. При этом, колебание с частотой (всегда меныией) называют первым главным колебанием, а с частотой — вторым главным колебанием. Числа определяющие отношения амплитуд (или самих координат, т. е. ) в каждом из этих колебаний, называют коэффициентами формы.

Так как уравнения (145) являются линейными, то суммы частных решений (150) и (151) тоже будут решениями этих уравнений:

Равенства (152), содержащие четыре произвольных постоянных определяемых по начальным условиям, дают общее решение уравнений (145) и определяют закон малых колебаний системы. колебания слагаются из двух главных колебаний с частотами и не являются гармоническими. В частных случаях, при соответствующих начальных условиях, система может совершать одно из главных колебаний (например, первое, если ) и колебание будет гармоническим.

Собственные частоты и коэффициенты формы не зависят от начальных условий и являются основными характеристиками малых колебаний системы; решение конкретных задач обычно сводится к определению этих характеристик.

Сопоставляя результаты этого и предыдущего параграфов, можно получить представление о том, к чему сведется исследование затухающих и вынужденных колебаний системы с двумя степенями свободы. Мы этого рассматривать не будем, отметим лишь, что при вынужденных колебаниях резонанс у такой системы может возникать дважды: при и при ( — частота возмущающей силы). Наконец, отметим, что колебания системы с s степенями свободы будут слагаться из s колебаний с частотами которые должны определяться из уравнения степени s относительно Это связано со значительными математическими трудностями, преодолеть которые можно с помощью электронных вычислительных (или аналоговых) машин.

Рис. 374

Задача 185. Определить собственные частоты и коэффициенты формы малых колебаний двойного физического маятника, образованного стержнями и 2 одинаковой массы и длины l (рис. 374, а).

Решение. Выберем в качестве обобщенных координат малые углы . Тогда , где и, при требуемой точности подсчетов, . В итоге

Далее или, полагая

Из равенств (а) и (б) видно, каковы здесь значения При этих значениях коэффициентов уравнение частот (149) примет вид

Его корнями будут: откуда

Подставляя теперь в любое из отношений, стоящих в левой части равенства (148), сначала а затем получим

Таким образом, при первом главном колебании оба стержня будут в каждый момент времени отклонены от вертикали в одну же сторону (рис. 374, а) и а при втором главном колебании — в разные стороны (рис. 374, б)

<< Предыдущий параграф Следующий параграф >>
Оглавление