ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава XXV. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ

§ 121. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ

Кинетической энергией системы называется скалярная величина Т, равная сумме кинетических энергий всех точек системы.

Кинетическая энергия является характеристикой и поступательного, и вращательного движений системы. Главное отличие величины Т от введенных ранее характеристик Q и Ко состоит в том, что кинетическая энергия является величиной скалярной и притом существенно положительной. Поэтому она не зависит от направлений движения частей системы и не характеризует изменений этих направлений.

Отметим еще следующее важное обстоятельство. Внутренние силы действуют на части системы по взаимно противоположным направлениям. По этой причине они, как мы видели, не изменяют векторных характеристик . Но если под действием внутренних сил будут изменяться модули скоростей точек системы, то при этом будет изменяться и величина Т.

Следовательно, кинетическая энергия системы отличается от величин и тем, что на ее изменение влияет действие и внешних, и внутренних сил.

Если система состоит из нескольких тел, то ее кинетическая энергия равна сумме кинетических энергий этих тел.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение. В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости центра масс. Следовательно, для любой точки и формула (41) дает

или

Таким образом, кинетическая энергия тела при поступательном движении равна половине произведения массы тела на квадрат скорости центра масс.

2. Вращательное движение. Если тело вращается вокруг какой-нибудь оси (см. рис. 295), то скорость любой его точки где — расстояние точки от оси вращения, а угловая скорость тела. Подставляя это значение в формулу (41) и вынося общие множители за скобки, получим

Величина, стоящая в скобках, представляет собой момент инерции тела относительно оси . Таким образом, окончательно найдем

т. е. кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение. При этом движении скорости всех точек тела в каждый момент времени распределены так, как если бы тело вращалось вокруг оси, перпендикулярной плоскости движения и проходящей через мгновенный центр скоростей Р (рис. 303). Следовательно, по формуле (43)

где момент инерции тела относительно названной выше оси; угловая скорость тела.

Величина в формуле (43) будет переменной, так как положение центра Р при движении тела все время меняется. Введем вместо постоянный момент инерции относительно оси, проходящей через центр масс С тела. По теореме Гюйгенса (см. § 103) , где . Подставим это выражение для в (43).

Учитывая, что точка Р — мгновенный центр скоростей и, следовательно, , где — скорость центра масс С, окончательно найдем

Следовательно, при плоскопараллельном движении кинетическая энергия тела равна энергии поступательного движения со скоростью центра масс, сложенной с кинетической энергией вращательного движения вокруг центра масс.

Рис. 303

Рис. 304

4. Общий случай движения. Если выбрать центр масс С тела в качестве полюса (рис. 304), то движение тела в общем случае будет слагаться из поступательного со скоростью полюса и вращательного вокруг мгновенной оси СР, проходящей через этот полюс (см. § 63). При этом, как показано в § 63, скорость любой точки тела слагается из скорости полюса и скорости, которую точка получает при вращении тела вокруг полюса (вокруг оси СР) и которую мы обозначим При этом по модулю где — расстояние точки от оси СР, а угловая скорость тела, которая (см. § 63) не зависит от выбора полюса. Тогда

Подставляя это значение в равенство (41) и учитывая, что найдем

где общие множители сразу вынесены за скобки.

В полученном равенстве первая скобка дает массу М тела, а вторая равна моменту инерции тела относительно мгновенной оси СР.

Величина же , так как она представляет собой количество движения, получаемое телом при его вращении вокруг оси СР, проходящей через центр масс тела (см. § 110).

В результате окончательно получим

Таким образом, кинетическая энергия тела в общем случае движения (в частности, и при плоскопараллельном движении) равна кинетической энергии поступательного движения со скоростью центра масс, сложенной с кинетической энергией вращательного движения вокруг оси, проходящей через центр масс.

Если за полюс взять не центр масс С, а какую-нибудь другую точку А тела и мгновенная ось АР при этом не будет все время проходить через центр масс, то для этой оси и формулы вида (45) мы не получим.

Рассмотрим примеры.

Задача 136. Вычислить кинетическую энергию катящегося без скольжения сплошного цилиндрического колеса массой М, если скорость его центра равна (см. рис. 308, а).

Решение Колесо совершает плоскопараллелыюе движение. По формуле (44) или (45)

Считаем колесо сплошным однородным цилиндром; тогда (см. § 102) , где R — радиус колеса. С другой стороны, так как точка В является для колеса мгновенным центром скоростей, то откуда Подставляя все эти значения, найдем

Задача 137. В детали А, движущейся поступательно со скоростью имеются направляющие, по которым со скоростью v перемещается тело В массой . Зная угол а (рис. 305), определить кинетическую энергию тела В.

Рис. 305

Рис. 306

Решение. Абсолютное движение тела В будет поступательным со скоростью (см. § 68). Тогда

Заметим, что если тело совершает сложное движение, то его полная кинетическая энергия не равна в общем случае сумме кинетических энергий относительного и переносного движений. Так, в данном примере

Задача 138. Часть механизма состоит из движущейся поступательно со скоростью и детали (рис. 306) и прикрепленного к ней на оси А стержня АВ длиной l и массой М. Стержень вращается вокруг оси А (в направлении, указанном дуговой стрелкой) с угловой скоростью со. Определить кинетическую энергию стержня при данном угле а.

Решение. Стержень совершает сложное (плоскопараллельное) движение. По формуле (44) или

Скорость точки С слагается из скорости и скорости дуль которой . Следовательно (рис. 306), - угловая скорость вращения стержня вокруг центра С такая же, как и вокруг конца А, так как со не зависит от выбора полюса. Кроме того, в задаче 119 (см.

§ 103) было показано, что

Подставляя все эти данные, получим Заметим, что в данном случае нельзя считать

Результат этот неверен, так как по доказанной теореме формула справедлива только тогда, когда ось вращения проходит через центр масс тела, а ось А через центр масс не проходит.

<< Предыдущий параграф Следующий параграф >>
Оглавление