ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Краткий курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 72. СЛОЖЕНИЕ ПОСТУПАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ. ВИНТОВОЕ ДВИЖЕНИЕ

Рассмотрим сложное движение твердого тела, слагающееся из поступательного и вращательного движений. Соответствующий пример показан на рис. 207. Здесь относительным движением тела 1 является вращение с угловой скоростью со вокруг оси укрепленной на платформе 2, а переносным — поступательное движение платформы со скоростью v. Одновременно в двух таких движениях участвует и колесо 3, для которого относительным движением является вращение вокруг его оси, а переносным — движение той же платформы. В зависимости от значения угла а между векторами и v (для колеса этот угол равен 90°) здесь возможны три случая.

1. Скорость поступательного движения перпендикулярна оси вращения Пусть сложное движение тела слагается из вращательного движения вокруг оси с угловой скоростью со и поступательного движения со скоростью v, перпендикулярной (рис. 208).

Рис. 207

Рис. 208

Легко видеть, что это движение представляет собой (по отношению к плоскости П, перпендикулярной оси ) плоскопараллельное движение, подробно изученное в гл. XI. Если считать точку А полюсом, то рассматриваемое движение, как и всякое плоскопараллельное, будет действительно слагаться из поступательного со скоростью т. е. со скоростью полюса, и из вращательного вокруг оси проходящей через полюс.

Вектор v можно заменить парой угловых скоростей (см. § 69), беря . При этом расстояние АР определится из равенства откуда (учитывая, что )

Векторы дают при сложении нуль, и мы получаем, что движение тела в этом случае можно рассматривать как мгновенное вращение вокруг оси с угловой скоростью . Этот результат был раньше получен другим путем (см. § 56). Сравнивая равенства (55) и (107), видим, что точка Р для сечения S тела является мгновенным центром скоростей Здесь еще раз убеждаемся, что поворот тела вокруг осей происходит с одной и той же угловой скоростью , т. е. что вращательная часть движения не зависит от выбора полюса (см. § 52).

2. Винтовое движение (). Если сложное движение тела слагается из вращательного вокруг оси с угловой скоростью со и поступательного со скоростью v, направленной параллельно оси (рис. 209), то такое движение тела называется винтовым. Ось называют осью винта.

Когда векторы направлены в одну сторону, то при принятом нами правиле изображения о винт будет правым; если в разные стороны, — левым.

Расстояние, проходимое за время одного оборота любой точкой тела, лежащей на оси винта, называется шагом h винта. Если величины и и со постоянны, то шаг винта также будет постоянным. Обозначая время одного оборота через Т, получаем в этом случае , откуда

Рис. 209

Рис. 210

При постоянном шаге любая точка М тела, не лежащая на оси винта, описывает винтовую линию. Скорость точки М, находящейся от оси винта на расстоянии , слагается из поступательной скорости v и перпендикулярной ей скорости, получаемой во вращательном движении, которая численно равна Следовательно,

Направлена скорость по касательной к винтовой линии. Если цилиндрическую поверхность, по которой движется точка М, разрезать вдоль образующей и развернуть, то винтовые линии обратятся в прямые, наклоненные к основанию цилиндра под углом

3. Скорость поступательного движения образует произвольный угол с осью вращения. Сложное движение, совершаемое телом в этом случае (рис. 210, а), представляет собой движение, рассмотренное в § 63 (общий случай движения свободного твердого тела).

Разложим вектор v (рис. 210, б) на составляющие: направленную вдоль со перпендикулярную Скорость можно заменить парой угловых скоростей (как на рис. 208), после чего векторы можно отбросить. Расстояние АС найдем по формуле (107):

Тогда у тела остается вращение с угловой скоростью о и поступательное движение со скоростью v. Следовательно, распределение скоростей точек тела в данный момент времени будет таким же, как при винтовом движении вокруг оси с угловой скоростью и поступательной скоростью а.

Проделанными операциями (рис. 210, б) мы перешли от полюса А к полюсу С. Результат подтверждает (см. § 63), что в общем случае движения твердого тела угловая скорость при перемене полюса не изменяется а меняется только поступательная скорость

Так как при движении свободного твердого тела величины v, со, а будут вообще все время изменяться, то будет непрерывно меняться и положение оси которую поэтому называют мгновенной винтовой осью. Таким образом, движение свободного твердого тела можно еще рассматривать как слагающееся из серии мгновенных винтовых движений вокруг непрерывно изменяющихся винтовых осей.

<< Предыдущий параграф Следующий параграф >>
Оглавление