ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 5.15. РАСЧЕТ НА ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ

В подавляющем большинстве случаев расчеты на прочность деталей, работающих при переменных напряжениях, выполняют как проверочные. Это связано в первую очередь с тем, что общий коэффициент снижения предела выносливости или в процессе конструирования детали можно выбрать лишь ориентировочно, так как у расчетчика (конструктора) на этой стадии работы имеются лишь весьма приближенные представления о размерах и форме детали. Проектный расчет детали, служащий для определения ее основных размеров, обычно выполняется приближенно без учета переменности напряжений, но по пониженным допускаемым напряжениям.

После выполнения рабочего чертежа детали производится ее уточненный проверочный расчет с учетом переменности напряжений, а также конструктивных и технологических факторов, влияющих на усталостную прочность детали. При этом определяют расчетные коэффициенты запаса прочности для одного или нескольких предположительно опасных сечений детали. Эти коэффициенты запаса сопоставляют с теми, которые назначают или рекомендуют для деталей, аналогичных проектируемой при заданных условиях ее эксплуатации. При таком проверочном расчете условие прочности имеет вид

(14.15)

Величина требуемого коэффициента запаса прочности зависит от целого ряда обстоятельств, основными из которых являются: назначение детали (степень ее ответственности), условия работы; точность определения действующих на нее нагрузок, надежность сведений о механических свойствах ее материала, значениях коэффициентов концентрации напряжений и т. п. Обычно

В случае, если расчетный коэффициент запаса прочности ниже требуемого (т. е. прочность детали недостаточна) или значительно выше требуемого (т. е. деталь неэкономична), приходится вносить те или иные изменения в размеры и конструкцию детали, а в отдельных случаях даже изменять ее материал.

Рассмотрим определение коэффициентов запаса прочности при одноосном напряженном состоянии и при чистом сдвиге. Первый из этих видов напряженного состояния, как известно, возникает при растяжении (сжатии), прямом или косом изгибе и совместном изгибе и растяжении (или сжатии) бруса. Напомним, что касательные напряжения при изгибе (прямом и косом) и сочетании изгиба с осевым нагружением в опасной точке бруса, как правило, невелики и при расчете на прочность ими пренебрегают, т. е. считают, что в опасной точке возникает одноосное напряженное состояние.

Чистый сдвиг возникает в точках работающего на кручение бруса круглого поперечного сечения.

В большинстве случаев коэффициент запаса прочности определяют в предположении, что рабочий цикл напряжений, возникающих в рассчитываемой детали при ее эксплуатации, подобен предельному циклу, т. е. коэффициенты асимметрии R и характеристики рабочего и предельного циклов одинаковы.

Наиболее просто коэффициент запаса прочности можно определить в случае симметричного цикла изменения напряжений, так как пределы выносливости материала при таких циклах обычно известны, а пределы выносливости рассчитываемых деталей можно вычислить по взятым из справочников значениям коэффициентов снижения пределов выносливости Коэффициент запаса прочности представляет собой отношение предела выносливости, определенного для детали, к номинальному значению максимального напряжения, возникающего в опасной точке детали. Номинальным является значение напряжения, определенное по основным формулам сопротивления материалов, т. е. без учета факторов, влияющих на величину предела выносливости (концентрации напряжений и т. п.).

Таким образом, для определения коэффициента запаса прочности при симметричных циклах получаем следующие зависимости:

при изгибе

(15.15)

при растяжении-сжатии

(16.15)

при кручении

(17.15)

При определении коэффициента запаса прочности в случае асимметричного цикла возникают затруднения, связанные с отсутствием экспериментальных данных, необходимых для построения участка линии предельных напряжений (см. рис. 7.15). Заметим, что практически нет надобности в построении всей диаграммы предельных амплитуд, так как для циклов с пределами выносливости, большими предела текучести, коэффициент запаса должен определяться по текучести (для пластичных материалов), т. е. расчет должен выполняться, как в случае статического действия нагрузки.

При наличии экспериментально полученного участка AD предельной кривой коэффициент запаса можно бы определить графоаналитическим способом. Как правило, эти экспериментальные данные отсутствуют и кривую AD приближенно заменяют прямой, построенной по каким-либо двум точкам, координаты которых определены экспериментально. В результате получают так называемую схематизированную диаграмму предельных амплитуд, которой и пользуются при практических расчетах на прочность.

Рассмотрим основные способы схематизации безопасной зоны диаграммы предельных амплитуд.

Рис. 9.15

В современной расчетной практике наиболее часто применяется диаграмма Серенсена—Кинасошвили, при построении которой участок AD заменяют прямой линией, проведенной через точки А и С, соответствующие предельным симметричному и отнулевому циклам (рис. 9.15, а). Достоинством этого способа является его относительно высокая точность (аппроксимирующая прямая АС, близка к кривой недостаток его заключается в том, что необходимо кроме величины предела выносливости при симметричном цикле иметь опытные данные о величине предела выносливости ) также и при отнулевом цикле.

При пользовании этой диаграммой коэффициент запаса определяется по выносливости (усталостному разрушению), если луч циклов, подобных заданному, пересекает прямую и по текучести, - если указанный луч пересекает линию

Несколько меньшую, но во многих случаях достаточную для практических расчетов точность дает метод, основанный на проксимации участка AD предельной кривой отрезком прямой линии (рис. 9.15,б), проведенной через точки А (соответствующую симметричному циклу) и В (соответствующую предельным постоянным напряжениям).

Достоинством рассматриваемого способа является меньшее по сравнению с предыдущим количество требуемых экспериментальных данных (не нужны данные о величине предела выносливости при отнулевом цикле). Какой из коэффициентов запаса, по усталостному разрушению или по текучести, меньше, определяют так же, как и в предыдущем случае.

В третьем типе схематизированных диаграмм (рис. 9.15, в) аппроксимирующую прямую проводят через точку А и некоторую точку Р, абсцисса которой определяется в результате обработки имеющихся экспериментально полученных диаграмм предельных напряжений. Для стали с достаточной точностью можно принимать, что отрезок OP — s равен Точность таких диаграмм почти не отличается от точности диаграмм, построенных по методу Серенсена — Кинасошвили.

Особенно проста схематизированная диаграмма, в которой безопасная зона ограничена прямой AL (рис. 9.15, г). Легко видеть, что расчет по такой диаграмме весьма неэкономичен, так как на схематизированной диаграмме линия предельных напряжений расположена значительно ниже действительной линии предельных напряжений.

Кроме того, такой расчет не имеет определенного физического смысла, так как неизвестно, какой коэффициент запаса, по усталости или по текучести, будет определен. Несмотря на указанные серьезные недостатки, диаграмма по рис. 9.15, а иногда используется в зарубежной практике; в отечественной практике в последние годы такая диаграмма не применяется.

Выведем аналитическое выражение для определения коэффициента запаса прочности по усталостному разрушению на основании рассмотренных схематизированных диаграмм предельных амплитуд. На первом этапе вывода не будем учитывать влияние факторов, снижающих предел выносливости, т. е. сначала получим формулу, пригодную для нормальных лабораторных образцов.

Допустим, что точка N, изображающая рабочий цикл напряжений, находится в области (рис. 10.15) и, следовательно, при возрастании напряжений до величины, определяемой точкой наступит усталостное разрушение (как уже указывалось, предполагается, что рабочий и предельный циклы подобны). Коэффициент запаса по усталостному разрушению для цикла, изображенного точкой N, определяется как отношение

Проведем через точку N прямую , параллельную прямой и горизонтальную прямую NE.

Из подобия треугольников следует, что

Как следует из рис. 10.15,

где

Подставим полученные значения величин ОА и в равенство (а):

Аналогично в случае переменных касательных напряжений

Значения зависят от принятого для расчета типа схематизированной диаграммы предельных напряжений и от материала детали.

Рис. 10.15

Так, если принять диаграмму Серенсена — Кинасошвили (см. рис. 9.15, а), то

или

аналогично,

По схематизированной диаграмме, изображенной на рис. 9.15, б,

или

(20.15)

аналогично,

(21.15)

Значения и при расчете по методу Серенсена — Кинасошвили можно принимать по приведенным данным (табл. 1.15).

Таблица 1.15

Значения коэффициентов для стали

При определении коэффициента запаса прочности для конкретной детали надо учесть влияние коэффициента снижения предела выносливости Опыты показывают, что концентрация напряжений, масштабный эффект и состояние поверхности отражаются только на величинах предельных амплитуд и практически не влияют на величины предельных средних напряжений. Поэтому в расчетной практике принято коэффициент снижения предела выносливости относить только к амплитудному напряжению цикла. Тогда окончательные формулы для определения коэффициентов запаса прочности по усталостному разрушению будут иметь вид: при изгибе

(22.15)

при кручении

(23.15)

При растяжении-сжатии следует пользоваться формулой (22.15), но вместо подставлять в нее предел выносливости при симметричном цикле растяжения-сжатия.

Формулы (22.15), (23.15) действительны при всех указанных способах схематизации диаграмм предельных напряжений; изменяются лишь величины коэффициентов

Формула (22.15) получена для циклов с положительными средними напряжениями для циклов с отрицательными (сжимающими) средними напряжениями следует полагать т. е. исходить из предположения о том, что в зоне сжатия линия предельных напряжений параллельна оси абсцисс.

Наряду с коэффициентом запаса по усталостному разрушению должен быть определен коэффициент запаса по текучести.

При изгибе (или при растяжении-сжатни)

при кручении

В качестве расчетного следует принимать меньший из коэффициентов запаса, определенных по формулам (22.15) и (24.15), или (23.15) и (25.15).

Выше указывалось, что в большинстве случаев расчеты на усталостную прочность выполняют как проверочные. Однако в некоторых простейших случаях возможен проектный расчет на усталостную прочность по допускаемому напряжению , соответствующему заданной характеристике цикла или Выведем формулу для допускаемого нормального напряжения при цикле с характеристикой Полагая в формуле имеем

Отсюда

но

и, следовательно,

(26.15)

Аналогично допускаемое касательное напряжение

(27.15)

Приведем теперь без обоснований зависимость для определения коэффициента запаса прочности при работе бруса на совместное действие изгиба с кручением, или кручения с растяжением (сжатием), или изгиба с кручением и растяжением (сжатием), т. е. для тех случаев, когда в опасной точке детали возникает плоское напряженное состояние. В указанных случаях общий коэффициент запаса прочности определяется из выражения

(28.15)

Здесь — общий коэффициент запаса прочности; — коэффициент запаса прочности по нормальным напряжениям; - коэффициент запаса прочности по касательным напряжениям.

Аналогично определяется общий коэффициент запаса по пределу текучести следует лишь заменить соответственно на .

Формула (28.15) применима в случае, если нормальные и касательные напряжения в проверяемой точке детали изменяются синхронно, т. е. одновременно достигают своих максимальных и минимальных значений. Указания о выполнении расчетов в случаях, когда это условие не соблюдается, приводятся в специальной литературе

Формула (28.15) обычно применяется при уточненном проверочном расчете валов. При этом часто определение коэффициента запаса приходится выполнять для нескольких сечений вала, так как без расчета нельзя установить, какое из них является опасным. Сечение, для которого коэффициент запаса прочности имеет минимальное значение, и является опасным.

<< Предыдущий параграф Следующий параграф >>
Оглавление