ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 3.15. ДИАГРАММЫ ПРЕДЕЛЬНЫХ АМПЛИТУД И ПРЕДЕЛЬНЫХ НАПРЯЖЕНИИ

При эксплуатации машин и инженерных сооружений в их элементах возникают напряжения, изменяющиеся во времени по самым разнообразным циклам. Для расчета элементов на прочность необходимо иметь данные о величинах пределов выносливости при циклах с различными коэффициентами асимметрии. Поэтому наряду с испытаниями при симметричных циклах испытания проводят и при асимметричных циклах.

Следует иметь в виду, что испытания на выносливость при асимметричных циклах выполняют на специальных машинах, конструкции которых значительно сложнее, чем конструкции машин для испытания образцов при симметричном цикле изгиба.

Результаты испытаний на выносливость при циклах с различными коэффициентами асимметрии обычно представляют в виде диаграмм (графиков), изображающих зависимость между какими-либо двумя параметрами предельных циклов.

Эти диаграммы можно построить, например, в координатах от, их называют диаграммами предельных амплитуд, они показывают зависимость между средними напряжениями и амплитудами предельных циклов—циклов, для которых максимальные напряжения равны пределам выносливости: Здесь и ниже максимальное, минимальное, среднее и амплитудное напряжения предельного цикла будем обозначать

Диаграмму зависимости между параметрами предельного цикла можно построить также в координатах Такую диаграмму называют диаграммой предельных напряжений.

При расчете стальных конструкций в промышленном и гражданском строительстве применяют диаграммы, дающие зависимость между коэффициентом асимметрии цикла R и пределом выносливости отах

Подробно рассмотрим диаграмму предельных амплитуд (ее иногда называют диаграммой ), которая в дальнейшем использована для получения зависимостей, применяемых в расчетах на прочность при переменных напряжениях.

Для получения одной точки рассматриваемой диаграммы необходимо испытать серию одинаковых образцов (не менее 10 штук) и построить кривую Вёлера, по которой определится величина предела выносливости для цикла с данным коэффициентом асимметрии (это относится и ко всем другим типам диаграмм для предельных циклов).

Допустим, проведены испытания при симметричном цикле изгиба; в результате получена величина предела выносливости Координаты точки, изображающей этот предельный цикл, равны: [см. формулы (1.15) — (3.15)], т. е. точка находится на оси ординат (точка А на рис. 6.15). Для произвольного асимметричного цикла по пределу выносливости определенному из опытов, нетрудно найти и от. По формуле (3.15),

но [см. формулу (5.15)], следовательно,

или

и

В частности, для отнулевого цикла при пределе выносливости, равном

Этому циклу соответствует точка С на диаграмме, представленной на рис. 6.15.

Определив экспериментальное значение для пяти-шести различных циклов, по формулам (7.15) и (8.15) получают координаты от и отдельных точек, принадлежащих предельной кривой. Кроме того, в результате испытания при постоянной нагрузке определяют предел прочности материала, который для общности рассуждений можно рассматривать как предел выносливости для цикла с . Этому циклу на диаграмме соответствует точка В. Соединяя плавной кривой точки, координаты которых найдены по экспериментальным данным, получают диаграмму предельных амплитуд (рис. 6.15).

Рис. 6.15

Рассуждения о построении диаграммы, проведенные для циклов нормальных напряжений, применимы для циклов касательных напряжений (при кручении), но изменяются обозначения вместо от и т. п.).

Диаграмма, представленная на рис. 6.15, построена для циклов с положительными (растягивающими) средними напряжениями от 0. Конечно, принципиально возможно построение подобной диаграммы и в области отрицательных (сжимающих) средних напряжений но практически в настоящее время имеется весьма немного опытных данных об усталостной прочности при Для мало- и среднеуглеродистых сталей приближенно можно принимать, что в области отрицательных средних напряжений предельная кривая параллельна оси абсцисс.

Рассмотрим теперь вопрос об использовании построенной диаграммы. Пусть рабочему циклу напряжений соответствует точка N с координатами (т. е. при работе в рассматриваемой точке детали возникают напряжения, цикл изменения которых задан какими-либо двумя параметрами, что позволяет найти все параметры цикла и, в частности, ).

Проведем из начала координат луч через точку N. Тангенс угла наклона этого луча к оси абсцисс равен характеристике цикла:

Очевидно, что любая другая точка, лежащая в том же луче, соответствует циклу, подобному заданному (циклу, имеющему те же значения ). Итак, любой луч, проведенный через начало координат, является геометрическим местом точек, соответствующих подобным циклам. Все циклы, изображаемые точками луча, лежащими не выше предельной кривой (т. е. точками отрезка (Ж), безопасны в отношении усталостного разрушения. При этом цикл, изображаемый точкой КУ является для заданного коэффициента асимметрии предельным его максимальное напряжение, определяемое как сумма абсциссы и ординаты точки К (отах ), равно пределу выносливости:

Аналогично для заданного цикла максимальное напряжение равно сумме абсциссы и ординаты точки

Считая, что рабочий цикл напряжений в рассчитываемой детали и предельный цикл подобны, определяем коэффициент запаса прочности как отношение предела выносливости к максимальному напряжению заданного цикла:

Как следует из изложенного, коэффициент запаса при наличии диаграммы предельных амплитуд, построенной по экспериментальным данным, можно определить графоаналитическим способом. Однако такой способ пригоден лишь при условии, что рассчитываемая деталь и образцы, в результате испытаний которых получена диаграмма, идентичны по форме, размерам и качеству обработки (подробно это изложено в § 4.15, 5.15).

Для деталей из пластичных материалов опасно не только усталостное разрушение, но и возникновение заметных остаточных деформаций, т. е. наступление текучести. Поэтому из области, ограниченной линией АВ (рис. 7.15), все точки которой соответствуют циклам, безопасным в отношении усталостного разрушения, надо выделить зону, соответствующую циклам с максимальными напряжениями, меньшими предела текучести. Для этого из точки L, абсцисса которой равна пределу текучести проводят прямую, наклоненную к оси абсцисс под углом 45°. Эта прямая отсчет на оси ординат отрезок ОМ, равный (в масштабе диаграммы) пределу текучести. Следовательно, уравнение прямой LM (уравнение в отрезках) будет иметь вид

или

т. е. для любого цикла, изображаемого точками линии LM, максимальное напряжение равно пределу текучести. Точки, лежащие выше линии LM, соответствуют циклам с максимальными напряжениями, большими предела текучести Таким образом, циклы, безопасные как в отношении усталостного разрушения, так и в отношении возникновения текучести, изображаются точками области

Рис. 7.15

Довольно широко применяется также диаграмма предельных напряжений, изображающая зависимость предельных значений максимальных и минимальных напряжений циклов от предельных средних напряжений (так называемая диаграмма Смита). Примерный вид такой диаграммы для среднеуглеродистой стали (для циклов с положительными средними напряжениями) показан на рис 8.15. На этой диаграмме каждый цикл изображен двумя точками. Так, предельный симметричный цикл изображен точками А и точка В соответствует предельным постоянным напряжениям (отах ); предельный отнулевой (пульсирующий) цикл изображен точками С и

Чтобы определить предел выносливости для цикла с коэффициентом асимметрии, равным R, по диаграмме, построенной по экспериментальным данным, из начала координат надо провести луч под углом Р к оси абсцисс. Тангенс этого луча определяется по формуле

Ордината точки К пересечения этого луча с линией предельных напряжений дает величину атах.

Для получения области циклов, безопасных в отношении как усталостного разрушения, так и возникновения текучести, на луче ОВ (точки этого луча соответствуют постоянным во времени напряжениям: следует взять точку, изображающую цикл, для которого (точка Т на рис. 8.15), и провести из нее две прямые, как показано на рисунке.

Область безопасных циклов ограничена отрезком оси ординат, кривыми и ломаной

Рис. 8.15

<< Предыдущий параграф Следующий параграф >>
Оглавление