ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 3.1. ВНУТРЕННИЕ СИЛЫ. МЕТОД СЕЧЕНИЙ

Внутри любого материала имеются внутренние межатомные силы, наличие которых определяет способность тела воспринимать действующие на него внешние силы, сопротивляться разрушению, изменению формы и размеров. Приложение к телу внешней нагрузки вызывает изменение (увеличение или уменьшение) внутренних сил, т. е. появление дополнительных внутренних сил.

В сопротивлении материалов изучаются дополнительные внутренние силы. Поэтому под внутренними силами (или внутренними усилиями) в сопротивлении материалов понимают силы взаимодействия между отдельными элементами сооружения или между отдельными частями элемента, возникающие под действием внешних сил. Это понятие равносильно допущению об отсутствии в теле внутренних сил до приложения к нему внешних нагрузок. Поэтому иногда считают, что в сопротивлении материалов принимается гипотеза о ненапряженном начальном состоянии тела.

Рассмотрим элемент конструкции, на который действует система внешних сил, находящихся в равновесии (рис. 4.1, а). Напоминаем, что в число внешних сил входят как заданные активные силы, так и реакции связей. Мысленно рассечем элемент плоскостью . Силы воздействия отсеченной правой части элемента на его левую часть (на правый ее торец) являются по отношению к ней внешними; для всего же элемента в целом они являются внутренними силами. Этим силам (на основании известного закона механики: действие равно противодействию) равны по величине и противоположны по направлению внутренние силы воздействия левой части элемента на правую.

В общем случае пространственной задачи взаимодействие между левой и правой частями элемента можно представить некоторой силой R, приложенной в произвольно выбранной точке О сечения , и моментом М относительно некоторой оси, проходящей через эту точку (рис. 4.1, б, в).

Сила R является главным вектором, а момент М—главным моментом системы внутренних сил, действующих по проведенному сечению.

Определение внутренних сил, возникающих в брусе, обычно производится для сечений, перпендикулярных к его продольной оси, т. е. для поперечных сечений бруса. Точка О принимается расположенной на оси бруса, т. е. совпадающей с центром тяжести его поперечного сечения.

Главный вектор R раскладывается на две составляющие силы: силу N, направленную вдоль оси бруса и называемую продольной силой, и силу Т, действующую в плоскости поперечного сечения и называемую поперечной силой (рис. 5.1, а). Момент М раскладывается на два составляющих момента: момент действующий в плоскости поперечного сечения и называемый крутящим моментом, и момент действующий в плоскости, перпендикулярной к поперечному сечению, и называемый изгибающим моментом (рис. 5.1, б).

Рис. 5.1.

Каждому из внутренних усилий соответствует определенный вид Рис. 5.1 деформации бруса. Продольной силе N соответствует растяжение (или сжатие), поперечной силе Т — сдвиг, крутящему моменту — кручение, а изгибающему моменту — изгиб. Различные их сочетания, например сжатие с изгибом, изгиб с кручением и т. п., представляют собой сложные сопротивления.

Внутренние усилия N и характеризуются каждое одним параметром—величиной усилия. Поперечная сила Т характеризуется двумя параметрами, например, величиной этой силы и ее направлением (в плоскости поперечного сечения бруса). Более удобно силу Т определять через составляющие ее поперечные силы параллельные двум взаимно перпендикулярным осям, расположенным в плоскости поперечного сечения бруса (рис. 5.1, а). Изгибающий момент Мн также характеризуется двумя параметрами; его обычно раскладывают на два составляющих изгибающих момента относительно осей z и у.

Таким образом, взаимодействие любых двух частей конструкции характеризуется тремя составляющими главного вектора и тремя составляющими главного момента внутренних сил, возникающих в рассматриваемом поперечном сечении. Эти составляющие называются внутренними силовыми факторами, или внутренними усилиями.

Рассмотрим общий прием определения внутренних усилий, называемый методом сечений.

Рассечем стержень (рис. 6.1, а) плоскостью совпадающей с поперечным сечением стержня. В полученном поперечном сечении в общем случае действует шесть внутренних усилий: (рис. 6.1, б, в).

Правая часть стержня (рис. 6.1, в) находится в равновесии; значит, внешние силы приложенные к ней, уравновешиваются внутренними усилиями, действующими на правую часть. Но те же внешние силы уравновешиваются и нагрузками, приложенными к левой части стержня (силами ), так как весь стержень в целом (рис. 6.1, а) также находится в равновесии. Следовательно, нагрузки, приложенные к левой части стержня (силы ), и внутренние усилия, действующие на правую часть, статически эквивалентны друг другу.

Таким образом, проекция на какую-либо ось внутренних усилий в сеченииу действующих со стороны левой части стержня на правую, равна проекции на эту ось всех внешних сил, приложенных к левой части. Аналогично, момент относительно какой-либо оси внутренних усилий в сечении, действующих со стороны левой части стержня на правую, равен моменту всех внешних сил, приложенных к левой части относительно этой оси.

Из шести внутренних усилий, действующих в поперечном сечении стержня, проекции пяти усилий на каждую из осей равны нулю. Аналогично равны нулю и моменты пяти внутренних усилий относительно каждой из указанных осей. Это позволяет легко определять внутренние усилия в стержне, проектируя на ось х или у, или z все внутренние усилия, действующие на правую часть стержня (рис. 6.1, в), и все внешние силы, приложенные к левой части (рис. 6.1, б), или определяя их моменты относительно одной из указанных осей.

Определим, например, величину продольной силы N в поперечном сечении показанном на рис. 6.1, а. Как следует из рис. 6.1, в, проекция на ось всех внутренних усилий, действующих на правую часть стержня, равна если для проекции положительным считать направление справа налево. Поэтому сила N равна сумме проекций на ось всех внешних сил, действующих на левую часть стержня (т. е. сил — рис. 6.1, б). Аналогично значение, например, крутящего момента в поперечном сечении стержня равно сумме моментов сил (рис. 6.1, б) относительно оси если положительными считать моменты, направленные по часовой стрелке (при взгляде с левого конца оси х на правый), и т. д.

Рис. 6.1

Внутренние силы, действующие в сечении со стороны левой части на правую, можно определить по внешним силам, приложенным не к левой, а к правой части. В этом случае полученные направления проекций внешних сил на выбранные оси и моментов относительно этих осей необходимо изменять на противоположные.

Внутренние усилия в каком-либо сечении обычно определяют по внешним силам, приложенным к той части конструкции (расположенной по одну сторону от рассматриваемого сечения), на которую действует меньше сил.

В теоретической механике, в разделе статики, широко применяется замена системы сил их равнодействующей и перенос силы по линии ее действия. В сопротивлении материалов это не всегда возможно, так как может приводить к неправильным результатам. Например, совершенно очевидно, что при определении внутренних сил в сечении (рис. 6.1, а) замена нескольких сил, приложенных к телу по разные стороны от этого сечения, их равнодействующей недопустима, так как она приведет к изменению величин внутренних сил. По этой же причине недопустим перенос какой-либо силы, приложенной левее сечения по линии ее действия, в точку, расположенную правее этого сечения.

<< Предыдущий параграф Следующий параграф >>
Оглавление