ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 3.1. ВНУТРЕННИЕ СИЛЫ. МЕТОД СЕЧЕНИЙ

Внутри любого материала имеются внутренние межатомные силы, наличие которых определяет способность тела воспринимать действующие на него внешние силы, сопротивляться разрушению, изменению формы и размеров. Приложение к телу внешней нагрузки вызывает изменение (увеличение или уменьшение) внутренних сил, т. е. появление дополнительных внутренних сил.

В сопротивлении материалов изучаются дополнительные внутренние силы. Поэтому под внутренними силами (или внутренними усилиями) в сопротивлении материалов понимают силы взаимодействия между отдельными элементами сооружения или между отдельными частями элемента, возникающие под действием внешних сил. Это понятие равносильно допущению об отсутствии в теле внутренних сил до приложения к нему внешних нагрузок. Поэтому иногда считают, что в сопротивлении материалов принимается гипотеза о ненапряженном начальном состоянии тела.

Рассмотрим элемент конструкции, на который действует система внешних сил, находящихся в равновесии (рис. 4.1, а). Напоминаем, что в число внешних сил входят как заданные активные силы, так и реакции связей. Мысленно рассечем элемент плоскостью . Силы воздействия отсеченной правой части элемента на его левую часть (на правый ее торец) являются по отношению к ней внешними; для всего же элемента в целом они являются внутренними силами. Этим силам (на основании известного закона механики: действие равно противодействию) равны по величине и противоположны по направлению внутренние силы воздействия левой части элемента на правую.

В общем случае пространственной задачи взаимодействие между левой и правой частями элемента можно представить некоторой силой R, приложенной в произвольно выбранной точке О сечения , и моментом М относительно некоторой оси, проходящей через эту точку (рис. 4.1, б, в).

Сила R является главным вектором, а момент М—главным моментом системы внутренних сил, действующих по проведенному сечению.

Определение внутренних сил, возникающих в брусе, обычно производится для сечений, перпендикулярных к его продольной оси, т. е. для поперечных сечений бруса. Точка О принимается расположенной на оси бруса, т. е. совпадающей с центром тяжести его поперечного сечения.

Главный вектор R раскладывается на две составляющие силы: силу N, направленную вдоль оси бруса и называемую продольной силой, и силу Т, действующую в плоскости поперечного сечения и называемую поперечной силой (рис. 5.1, а). Момент М раскладывается на два составляющих момента: момент действующий в плоскости поперечного сечения и называемый крутящим моментом, и момент действующий в плоскости, перпендикулярной к поперечному сечению, и называемый изгибающим моментом (рис. 5.1, б).

Рис. 5.1.

Каждому из внутренних усилий соответствует определенный вид Рис. 5.1 деформации бруса. Продольной силе N соответствует растяжение (или сжатие), поперечной силе Т — сдвиг, крутящему моменту — кручение, а изгибающему моменту — изгиб. Различные их сочетания, например сжатие с изгибом, изгиб с кручением и т. п., представляют собой сложные сопротивления.

Внутренние усилия N и характеризуются каждое одним параметром—величиной усилия. Поперечная сила Т характеризуется двумя параметрами, например, величиной этой силы и ее направлением (в плоскости поперечного сечения бруса). Более удобно силу Т определять через составляющие ее поперечные силы параллельные двум взаимно перпендикулярным осям, расположенным в плоскости поперечного сечения бруса (рис. 5.1, а). Изгибающий момент Мн также характеризуется двумя параметрами; его обычно раскладывают на два составляющих изгибающих момента относительно осей z и у.

Таким образом, взаимодействие любых двух частей конструкции характеризуется тремя составляющими главного вектора и тремя составляющими главного момента внутренних сил, возникающих в рассматриваемом поперечном сечении. Эти составляющие называются внутренними силовыми факторами, или внутренними усилиями.

Рассмотрим общий прием определения внутренних усилий, называемый методом сечений.

Рассечем стержень (рис. 6.1, а) плоскостью совпадающей с поперечным сечением стержня. В полученном поперечном сечении в общем случае действует шесть внутренних усилий: (рис. 6.1, б, в).

Правая часть стержня (рис. 6.1, в) находится в равновесии; значит, внешние силы приложенные к ней, уравновешиваются внутренними усилиями, действующими на правую часть. Но те же внешние силы уравновешиваются и нагрузками, приложенными к левой части стержня (силами ), так как весь стержень в целом (рис. 6.1, а) также находится в равновесии. Следовательно, нагрузки, приложенные к левой части стержня (силы ), и внутренние усилия, действующие на правую часть, статически эквивалентны друг другу.

Таким образом, проекция на какую-либо ось внутренних усилий в сеченииу действующих со стороны левой части стержня на правую, равна проекции на эту ось всех внешних сил, приложенных к левой части. Аналогично, момент относительно какой-либо оси внутренних усилий в сечении, действующих со стороны левой части стержня на правую, равен моменту всех внешних сил, приложенных к левой части относительно этой оси.

Из шести внутренних усилий, действующих в поперечном сечении стержня, проекции пяти усилий на каждую из осей равны нулю. Аналогично равны нулю и моменты пяти внутренних усилий относительно каждой из указанных осей. Это позволяет легко определять внутренние усилия в стержне, проектируя на ось х или у, или z все внутренние усилия, действующие на правую часть стержня (рис. 6.1, в), и все внешние силы, приложенные к левой части (рис. 6.1, б), или определяя их моменты относительно одной из указанных осей.

Определим, например, величину продольной силы N в поперечном сечении показанном на рис. 6.1, а. Как следует из рис. 6.1, в, проекция на ось всех внутренних усилий, действующих на правую часть стержня, равна если для проекции положительным считать направление справа налево. Поэтому сила N равна сумме проекций на ось всех внешних сил, действующих на левую часть стержня (т. е. сил — рис. 6.1, б). Аналогично значение, например, крутящего момента в поперечном сечении стержня равно сумме моментов сил (рис. 6.1, б) относительно оси если положительными считать моменты, направленные по часовой стрелке (при взгляде с левого конца оси х на правый), и т. д.

Рис. 6.1

Внутренние силы, действующие в сечении со стороны левой части на правую, можно определить по внешним силам, приложенным не к левой, а к правой части. В этом случае полученные направления проекций внешних сил на выбранные оси и моментов относительно этих осей необходимо изменять на противоположные.

Внутренние усилия в каком-либо сечении обычно определяют по внешним силам, приложенным к той части конструкции (расположенной по одну сторону от рассматриваемого сечения), на которую действует меньше сил.

В теоретической механике, в разделе статики, широко применяется замена системы сил их равнодействующей и перенос силы по линии ее действия. В сопротивлении материалов это не всегда возможно, так как может приводить к неправильным результатам. Например, совершенно очевидно, что при определении внутренних сил в сечении (рис. 6.1, а) замена нескольких сил, приложенных к телу по разные стороны от этого сечения, их равнодействующей недопустима, так как она приведет к изменению величин внутренних сил. По этой же причине недопустим перенос какой-либо силы, приложенной левее сечения по линии ее действия, в точку, расположенную правее этого сечения.

<< Предыдущий параграф Следующий параграф >>
Оглавление