ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 1. ОСНОВНЫЕ ПОНЯТИЯ

§ 1.1. ВВЕДЕНИЕ

При проектировании различных конструкций (сооружений, машин, приборов и др.) необходимо проводить расчеты на прочность. Неправильный расчет самой, на первый взгляд, незначительной детали может повлечь за собой очень тяжелые последствия, привести к разрушению всей конструкции.

Кроме расчетов на прочность, во многих случаях проектирования производят расчеты на жесткость и устойчивость.

Целью расчетов на жесткость является определение таких размеров элементов конструкций, при которых перемещения (деформации) не превышают заданных (обычно весьма малых) величин, допустимых по условиям нормальной эксплуатации.

Деформации многих конструкций при действии некоторого вида нагрузок незначительны, пока величины этих нагрузок меньше так называемых критических значений. При нагрузках же, превышающих (даже весьма незначительно) критические значения, деформации конструкций резко возрастают. Простейший пример такого явления представляет так называемый продольный изгиб сжатого стержня — при некотором значении сжимающей силы происходит выпучивание прямолинейного стержня, практически равносильное разрушению. Такое качественное изменение характера деформации конструкции при увеличении нагрузки называется потерей устойчивости. Расчет конструкции, имеющий целью не допустить потери устойчивости, называется расчетом на устойчивость.

При проведении расчетов необходимо сочетать надежность работы сооружения с его дешевизной, получать необходимые прочность, жесткость и устойчивость при наименьшем расходе материала.

Совокупность наук о прочности, жесткости и устойчивости сооружений называется строительной механикой. Одним из разделов строительной механики является сопротивление материалов. Другими ее разделами являются теория упругости (математическая и прикладная), теория пластичности и теория сооружений (включая статику, динамику и устойчивость сооружений.

В сопротивлении материалов рассматриваются вопросы расчета отдельных элементов конструкций и вопросы расчета некоторых простейших конструкций на прочность, жесткость и устойчивость.

В отличие от теоретической механики, в которой все тела рассматриваются как абсолютно твердые, в сопротивлении материалов учитывается, что элементы конструкций при действии внешних сил изменяют свою форму и размеры, т.е. деформируются.

В сопротивлении материалов широко применяются методы теоретической механики (в первую очередь статики) и математического анализа, а также используются данные из разделов физики, в которых изучаются свойства различных материалов.

Сопротивление материалов является экспериментально-теоретической наукой, так как она широко использует опытные данные и теоретические исследования.

Начало науки о сопротивлении материалов связывают обычно с именем знаменитого физика, математика и астронома Галилео Галилея (1564—1642), который в работе, опубликованной в 1638 г., дал решение некоторых важных задач динамики и сопротивления материалов.

В 1660 г. Р. Гук сформулировал закон, устанавливающий связь между нагрузкой и деформацией и имеющий исключительно важное значение для сопротивления материалов. Развитию этой науки в XVIII в. способствовали успехи высшей математики и механики; особенно большое значение имели работы Л. Эйлера.

Бурный рост промышленности в XIX в., внедрение паровых машин, строительство железных дорог, мостов, плотин, каналов, больших судов и крупных зданий вызвали быстрое развитие науки о прочности.

В России в конце XIX — начале XX в. важные исследования в области сопротивления материалов провели русские ученые Д. И. Журавский, А. В. Гадолин, X. С. Головин, Ф. С. Ясинский, В. Л. Кирпичев, И. Г. Бубнов, С. П. Тимошенко, А. Н. Динник и др.

Наибольшего расцвета наука о сопротивлении материалов в нашей стране достигла после Октябрьской революции. Этому способствовали бурный рост всего народного хозяйства, расширение сети высших технических учебных заведений, научно-исследовательских институтов и проектных организаций. Важные исследования провели в этот период советские ученые А. Н. Крылов, В. 3. Власов, Б. Г. Галеркин, К. С. Завриев, Н. М. Беляев, Б. Н. Жемочкин, А. А. Уманский, Н.П. Пузыревский, И. М. Рабинович, П. Л. Пастернак, С. Д. Пономарев, Н. И. Безухов, А. А. Гвоздев, Н. К. Снитко, М. М. Филоненко-Бородич, П. Ф. Папкович, С. В. Сервисен, А. Ф. Смирнов, В. В. Болотин и др.

Основное внимание в сопротивлении материалов уделяется изучению брусьев, являющихся наиболее распространенными элементами многих конструкций.

Брусом (или стержнем) называется элемент, длина которого значительно больше его поперечных размеров (рис. 1.1, а).

Горизонтальный (или наклонный) брус, работающий на изгиб, обычно называют балкой. Ось бруса представляет собой геометрическое место точек, совпадающих с центрами тяжести площадей поперечных сечений бруса т.е. сечений, расположенных в плоскостях, перпендикулярных к указанной оси.

Элемент конструкции, длина и ширина которого во много раз превышают его толщину, называется оболочкой (рис. 1.1, б).

Геометрическое место точек, равноудаленных от наружной и внутренней поверхностей оболочки, называется срединной поверхностью.

Рис. 1.1

Оболочка, срединная поверхность которой представляет собой плоскость, называется пластинкой (рис. 1.1, в).

Элемент конструкции, размеры которого во всех направлениях мало отличаются друг от друга (например, сплошная опора моста), называется массивным телом (рис. 1.1, г).

<< Предыдущий параграф Следующий параграф >>
Оглавление