ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 5.13. ПРОДОЛЬНО-ПОПЕРЕЧНЫЙ ИЗГИБ

Продольно-поперечным изгибом называется сочетание поперечного изгиба со сжатием или растяжением бруса.

При расчете на продольно-поперечный изгиб вычисление изгибающих моментов в поперечных сечениях бруса производится с учетом прогибов его оси.

Рассмотрим балку с шарнирно опертыми концами, нагруженною некоторой поперечной нагрузкой и сжимающей силой 5, действующей вдоль оси балки (рис. 8.13, а). Обозначим у прогиб оси балки в поперечном сечении с абсциссой (положительное направление оси у примем вниз, и, следовательно, прогибы балки считаем положительными, когда они направлены вниз). Изгибающий момент М, действующий в этом сечении,

(23.13)

здесь изгибающий момент от действия поперечной нагрузки; — дополнительный изгибающий момент от действия силы

Полный прогиб у можно рассматривать состоящим из прогиба возникающего от действия только поперечной нагрузки, и дополнительного прогиба, равного вызванного силой .

Рис. 8.13

Полный прогиб у больше суммы прогибов, возникающих при раздельном действии поперечной нагрузки и силы S, так как в случае действия на балку только силы S прогибы ее равны нулю. Таким образом, в случае продольно-поперечного изгиба принцип независимости действия сил неприменим.

При действии на балку растягивающей силы S (рис. 8.13, б) изгибающий момент в сечении с абсциссой

(24.13)

Растягивающая сила S приводит к уменьшению прогибов балки, т. е. полные прогибы у в этом случае меньше прогибов вызванных действием только поперечной нагрузки.

В практике инженерных расчетов под продольно-поперечным изгибом подразумевают обычно случай действия сжимающей силы и поперечной нагрузки.

При жесткой балке, когда дополнительные изгибающие моменты невелики по сравнению с моментом прогибы у мало отличаются от прогибов . В этих случаях можно пренебрегать влиянием силы S на величины изгибающих моментов и величины прогибов балки и производить ее расчет на центральное сжатие (или растяжение) с поперечным изгибом, как изложено в § 2.9.

При балке, жесткость которой невелика, влияние силы S на величины изгибающих моментов и прогибов балки может быть весьма существенным и пренебрегать им при расчете нельзя. В этом случае балку следует рассчитывать на продольно-поперечный изгиб, понимая под этим расчет на совместное действие изгиба и сжатия (или растяжения), выполняемый с учетом влияния осевой нагрузки (силы S) на деформацию изгиба балки.

Рассмотрим методику такого расчета на примере балки, шарнирно опертой по концам, нагруженной поперечными силами, направленными в одну сторону, и сжимающей силой S (рис. 9.13).

Подставим в приближенное дифференциальное уравнение упругой линии (1.13) выражение изгибающего момента М по формуле (23.13):

[знак минус перед правой частью уравнения взят потому, что в отличие от формулы (1.13) здесь положительным для прогибов считается направление вниз], или

Здесь

Следовательно,

ИЛИ

В целях упрощения решения предположим, что дополнительный прогиб изменяется по длине балки по синусоиде, т. е. что

Рис. 9.13

Это предположение позволяет получить достаточно точные результаты при действии на балку поперечной нагрузки, направленной в одну сторону (например, сверху вниз). Заменим в формуле (25.13) прогиб выражением

или

или

откуда

Выражение совпадает с формулой Эйлера для критической силы сжатого стержня с шарнирно закрепленными концами. Поэтому его обозначают и называют эйлеровой силой.

Следовательно,

Следует отличать эйлерову силу от критической силы вычисляемой по формуле Эйлера. Значение можно вычислять по формуле Эйлера лишь при условии, что гибкость стержня больше предельной; значение же подставляют в формулу (26.13) независимо от гибкости балки. В формулу для критической силы, как правило, входит минимальный момент инерции поперечного сечения стержня, а в выражение эйлеровой силы входит момент инерции относительно той из главных осей инерции сечения, которая перпендикулярна плоскости действия поперечной нагрузки.

Из формулы (26.13) следует, что соотношение между полными прогибами балки у и прогибами вызванными Действием только поперечной нагрузки, зависит от отношения (величины сжимающей силы 5 к величине эйлеровой силы).

Таким образом, отношение является критерием жесткости балки при продольно-поперечном изгибе; если это отношение близко к нулю, то жесткость балки велика, а если оно близко к единице, то жесткость балки мала, т. е. балка является гибкой.

В случае, когда , прогиб т. е. при отсутствии силы S прогибы вызываются только действием поперечной нагрузки.

Когда величина сжимающей силы S приближается к значению эйлеровой силы полные прогибы балки резко возрастают и могут во много раз превышать прогибы вызванные действием только поперечной нагрузки. В предельном случае при прогибы у, подсчитанные по формуле (26.13), становятся равными бесконечности.

Следует отметить, что формула (26.13) неприменима при весьма больших прогибах балки, так как она основана на приближенном выражении кривизны Это выражение применимо лишь при малых прогибах, а при больших должно быть заменено тоадым выражением кривизны (65.7). В этом случае прогибы у при не равнялись бы бесконечности, а были бы хотя и весьма большими, но конечными.

При действии на балку растягивающей силы формула (26.13) принимает вид.

Из этой, формулы следует, что полные прогибы у меньше прогибов вызванных действием только поперечной нагрузки. При растягивающей силе S, численно равной значению эйлеровой силы (т. е. при ), прогибы у вдвое меньше прогибов

Наибольшие и наименьшие нормальные напряжения в поперечном сечении балки с шарнирно закрепленными концами при продольно-поперечном изгибе и сжимающей силе S равны

(28.13)

Рассмотрим двухопорную балку двутаврового сечения с пролетом Балка нагружена посередине вертикальной силой Р и сжимается осевой силой S = 600 (рис. 10.13). Площадь поперечного сечения балки момент инерции , момент сопротивления и модуль упругости

Рис. 10.13

Поперечные связи, соединяющие эту балку с соседними балками сооружения, исключают возможность потери устойчивости балки в горизонтальной плоскости (т. е. в плоскости наименьшей жесткости).

Изгибающий момент и прогиб посредине балки, подсчитанные без учета влияния силы S, равны:

где

Эйлерова сила определяется из выражения

Прогиб посередине балки, подсчитанный с учетом влияния силы S на основании формулы (26.13),

Определим наибольшие нормальные (сжимающие) напряжения в среднем поперечном сечении балки по формуле (28.13):

откуда после преобразования

(29.13)

Подставив в выражение (29.13) различные значения Р (в ), получим соответствующие им значения напряжений . Графически зависимость между определяемая выражением (29.13), характеризуется кривой, изображенной на рис. 11.13.

Определим допускаемую нагрузку Р, если для материала балки а необходимый коэффициент запаса прочности следовательно, допускаемое напряжение для материала

Из рис. 11.23 следует, что напряжение возникает в балке при нагрузке а напряжение — при нагрузке

Если в качестве допускаемой принять нагрузку то коэффициент запаса по напряжениям будет равен заданному значению Однако при этом балка будет обладать незначительным коэффициентом запаса по нагрузке, так как напряжения, равные от, возникнут в ней уже при Рот

Следовательно, коэффициент запаса по нагрузке в этом случае будет равен 1,06 (так как е. явно недостаточен.

Для того чтобы балка имела по нагрузке коэффициент запаса, равный 1,5, в качестве допускаемого следует принять значение при этом напряжения в балке будут, как это следует из рис. 11.13, примерно равны

Рис. 11.13

Выше расчет на прочность производился по допускаемым напряжениям. Это обеспечивало необходимый запас прочности не только по напряжениям, но также и по нагрузкам, так как почти во всех случаях, рассмотренных в предыдущих главах, напряжения прямо пропорциональны величинам нагрузок.

При продольно-поперечном изгибе напряжения, как это следует из рис. 11.13, не прямо пропорциональны нагрузке, а изменяются быстрее, чем нагрузка (в случае сжимающей силы S). В связи с этим даже незначительное случайное увеличение нагрузки сверх расчетной может вызвать весьма большое увеличение напряжений и разрушение конструкции. Поэтому расчет сжато-изогнутых стержней на продольно-поперечный изгиб следует производить не по допускаемым напряжениям, а по допускаемой нагрузке.

Составим по аналогии с формулой (28.13) условие прочности при расчете на продольно-поперечный изгиб по допускаемой нагрузке.

Оно должно отражать то, что при предельной нагрузке, равной произведению допускаемой (или заданной) нагрузки на нормативный коэффициент запаса прочности, наибольшие (предельные) напряжения апред не должны превышать предела текучести Следовательно,

Здесь — предельная продольная сжимающая сила, равная произведению допускаемой (или заданной) силы S на коэффициент запаса — предельный изгибаюший момент в опасном сечении балки, подсчитанный без учета влияния силы — прогиб балки в опасном сечении от предельной поперечной нагрузки, подсчитанный по формуле (26.13) с учетом влияния силы .

Условие прочности (30.13) можно представить в виде

или, учитывая, что

Определим допускаемое значение нагрузки для рассмотренного выше примера (см. рис. 10.13). Подставляя в условие прочности (31.13) значения

получаем

или после преобразований

Решая это уравнение относительно [Р], получаем значение допускаемой нагрузки совпадающее со значением, подсчитанным выше с помощью графика, изображенного на рис. 11.13.

Аналогично производится расчет сжато-изогнутых стержней на продольно-поперечный изгиб при ином виде нагрузки и других типах опорных закреплений. При этом в формулу (26.13) следует подставлять значение эйлеровой силы, соответствующее опорным закреплениям рассчитываемого стержня, т. е.

Сжато-изогнутые стержни кроме расчета на продольно-поперечный изгиб необходимо рассчитывать также и на устойчивость.

Рис. 12.13.

<< Предыдущий параграф Следующий параграф >>
Оглавление