ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 4.2. ДИАГРАММЫ РАСТЯЖЕНИЯ И СЖАТИЯ

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль упругости и коэффициент Пуассона) определяются путем испытаний специальных образцов, изготовленных из исследуемого материала.

Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов — камня, цемента, бетона и т. д. - основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов. Сведения об устройстве этих машин и методике испытаний, а также о применяемых при этом измерительных приборах приводятся в специальных руководствах.

В процессе испытания специальное устройство автоматически вычерчивает график, изображающий (в прямоугольной системе координат) зависимость между действующей на образец продольной силой и удлинением (или укорочением) образца, т. е. вычерчивает диаграмму в координатах «сила—удлинение».

Для изучения свойств материала значительно удобнее иметь диаграммы, построенные в координатах «напряжение — относительная деформация».

На рис. 10.2 представлена диаграмма растяжения малоуглеродистой стали по оси ординат отложены напряжения а, а по оси абсцисс — относительные удлинения е.

Рис. 10.2

Пока растягивающие напряжения не достигают некоторой величины огпц, диаграмма представляет собой прямую линию, т. е. относительные удлинения 6 прямо пропорциональны напряжениям о; иными словами, до этого предела справедлив закон Гука. Напряжение называется пределом пропорциональности.

После достижения предела пропорциональности деформации растут не прямо пропорционально напряжениям, а быстрее. Начиная с того момента, когда напряжения достигнут некоторой величины деформации растут без увеличения напряжений, и на диаграмме получается участок, параллельный оси абсцисс. Это явление называется текучестью материала, а напряжение — пределом текучести.

Участок диаграммы, параллельный оси абсцисс, называется площадкой текучести. При текучести стали отшлифованная блестящая поверхность образца становится матовой, и на ней можно обнаружить появление линий, наклоненных к его оси под углом примерно 45° (рис. 11.2).

Эти линии называются линиями Чернова — по имени знаменитого русского металлурга Д. К. Чернова (1839—1921), впервые обнаружившего их.

Металлографические исследования показывают, что текучесть сопровождается сдвигами в кристаллах стали; следами этих сдвигов и являются линии Чернова.

При дальнейшем растяжении образца напряжения (а следовательно, и растягивающая сила) вновь начинают повышаться. Участок диаграммы 1—3 от конца площадки текучести до наивысшей точки (см. рис. 10.2) называют зоной упрочнения.

Наибольшее условное напряжение, выдерживаемое образцом, называется пределом прочности, или временным сопротивлением, и обозначается (применяется также обозначение ). Это напряжение соответствует точке 3 диаграммы. Последующее растяжение образца сопровождается уменьшением растягивающей силы. Следовательно, предел прочности представляет собой отношение наибольшей силы, которую выдерживает образец, к первоначальной площади его поперечного сечения.

Рис. 11.2

Рис. 12.2

При увеличении нагрузки в зоне упрочнения на образце появляется местное сужение; образуется так называемая шейка (рис. 12.2), в пределах которой и происходит затем разрыв образца. При этом условное напряжение в образце (определяемое делением величины растягивающей силы на первоначальную площадь поперечного сечения образца) уменьшается соответственно уменьшению величины растягивающей силы (участок 3—4 на рис. 10.2). Истинное напряжение по сечению шейки (т. е. напряжение, отнесенное к площади поперечного сечения шейки) при этом возрастает, как показано на рис. 10.2 штриховой линией 3—5.

Различие между истинным и условным напряжениями имеется не только после достижения предела прочности (точка 3 на рис. 10.2), но на любой стадии испытания, так как в результате поперечной деформации поперечное сечение растянутого образца уменьшается. Однако это различие до нагрузки, соответствующей временному сопротивлению материала, весьма мало.

Следует отметить, что при проектировании напряжения в конструкциях определяют без учета изменения размеров их элементов, а потому используют значения условных (а не истинных) напряжений, полученные при испытаниях образцов.

Если испытываемый образец нагрузить растягивающей силой, не превышающей некоторой величины, называемой пределом упругости, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по какому они увеличивались при нагружении (диаграмма при разгрчжении и нагружении изображается одной и той же линией). Следовательно, в этом случае в образце возникали только упругие деформации.

Предел упругости подавляющего большинства материалов практически совпадает с пределом пропорциональности. Если образец нагружен выше предела упругости, то при его разгрузке деформации полностью не исчезают и на диаграмме линия разгрузки представляет собой прямую (1—2 или на рис. 10.2), уже не совпадающую с линией нагружения. В этом случае деформация образца состоит из упругой и остаточной — пластической деформации.

При повторном нагружении образца диаграмма изображается сначала прямой 2—1 (или ), т. е. той же прямой, которая характеризует разгрузку образца, а затем кривой 1—3—4 (или 1'-3'-4'). Таким образом, при повторном нагружении предел пропорциональности повышается до того напряжения, до которого образец был ранее нагружен. Это явление называется наклепом.

Явление наклепа часто используется в технике; например, для уменьшения провисания проводов их предварительно вытягивают для создания в них наклепа. В случаях, когда наклеп нежелателен (так как он повышает хрупкость материала), его можно устранить путем отжига детали.

Материалы, разрушению которых предшествует возникновение значительных остаточных деформаций, называются пластичными. К ним, в частности, относится сталь диаграмма растяжения которой представлена на рис. 10.2.

Степень пластичности материала может быть охарактеризована величинами остаточного относительного удлинения образца, доведенного при растяжении до разрыва, и остаточного относительного сужения шейки образца. Чем больше эти величины, тем пластичнее материал.

Остаточным относительным удлинением 5 (дельта) называется отношение остаточной деформации образца к первоначальной его длине Величина этого отношения для различных марок конструкционной стали находится в пределах от 8 до 28%:

где - длина образца после разрыва, измеряемая после соединения частей разорванного образца.

Остаточным относительным сужением называется отношение изменения площади поперечного сечения образца в месте разрыва к первоначальной площади поперечного сечения. Величина этого отношения находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до для малоуглеродистой стали:

где — площадь поперечного сечения разорванного образца в наиболее тонком месте шейки.

Для стали (по ГОСТ 380—60):

Величина модуля упругости Е практически не зависит от химического состава и термической обработки стали.

Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают чисто геометрические нарушения идеального строения кристаллов, называемые дислокацией. Другие нарушения (атомные пропуски — вакансии, расположение чужеродных атомов в межузлиях решетки и т. д.) незначительно влияют на прочность металла.

Дислокации возникают при кристаллизации металлов, повышении температуры и т. п.

Теория дислокации стала создаваться лишь в последние годы. Тем не менее на основе этой теории уже разрабатываются принципиально новые методы повышения прочности металлов. Для весьма малых образцов уже достигнута прочность чистого железа, превышающая

Некоторые пластичные материалы, например дюралюмий, не имеют на диаграмме растяжения площадки текучести (рис. 13.2). Для таких материалов вводится понятие условного предела текучести, в качестве которого принимается напряжение, соответствующее остаточной деформации 0,2%. Эта механическая характеристика обозначается

С повышением содержания углерода в стали ее предел прочности повышается, а степень пластичности уменьшается.

Диаграмма растяжения среднеуглеродистой стали не имеет площадки текучести (примерный характер такой диаграммы представлен на рис. 14.2) и в качестве предела текучести для нее принимается величина Высокоуглеродистая закаленная сталь (с содержанием углерода порядка 0,7% и выше) представляет собой хрупкий материал, дающий при разрыве незначительное остаточное удлинение.

Весьма хрупким материалом является чугун. Для образцов из обычного серого литейного чугуна относительное остаточное удлинение при разрыве не превышает 0,015%.

Рис. 13.2

Рис. 14.2

При разрыве образцов из хрупких материалов шейка не образуется и растягивающее усилие растет до момента разрушения.

Диаграмма сжатия пластичной стали представлена на рис. 15.2. При сжатии образец расплющивается, и площадь его сечения увеличивается, в связи с чем увеличиваются также величины сжимающей силы и условных напряжений (т. е. напряжений, отнесенных к первоначальной площади поперечного сечения образца).

Рис. 15.2

Рис. 16.2

Таким образом, понятие предела прочности при сжатии пластичной стали лишено физического смысла. Пределы текучести при растяжении и сжатии для одной и той же пластичной стали практически одинаковы.

Хрупкие материалы, например чугун, имеют несколько иную диаграмму сжатия. Деформации чугуна очень малы; они с самого начала не следуют закону Гука, а потому диаграмма получается криволинейной (кривая на рис. 16.2, а); однако участок диаграммы, соответствующий малым напражениям, лишь незначительно отличается от прямой.

Диаграмма растяжения чугуна (кривая II на рис. 16.2, а) по характеру аналогична диаграмме сжатия, но предел прочности при растяжении зничительно ниже, чем предел прочности при сжатии . Иными словами, чугун значительно хуже работает на растяжение, чем на сжатие. При сжатии чугунный образец разрушается в результате образования наклонных трещин, направленных примерно под углом 45° к оси образца (как это показано на рис. 16.2, б), т. е. параллельно площадкам, в которых действуют наибольшие касательные напряжения.

Некоторые материалы обладают различными свойствами в различных направлениях.

Рис. 17.2

Рис. 18.2

Такие материалы называются анизотропными. Анизотропным материалом является, например, сосна, сопротивляемость которой существенно зависит от направления силы по отношению к направлению волокон. Сопротивление сосны вдоль волокон значительно больше, чем поперек волокон, а величина деформаций меньше. На рис. 17.2 показаны диаграммы сжатия сосны вдоль волокон (а) и поперек волокон (б).

Для сухой сосны средние значения предела прочности на сжатие вдоль волокон составляют примерно модуля упругости Для сжатия поперек волокон предел прочности составляет примерно 50 кгс/см2, а модуль упругости — Предел прочности сосны при растяжении вдоль волокон приблизительно вдвое больше, чем при сжатии. Модуль упругости при растяжении несколько больше, чем при сжатии, но для расчетов он принимается таким же, как и при сжатии.

Деформации некоторых материалов и напряжения в них изменяются во времени; это явление называется ползучестью. Если к такому материалу приложена постоянная нагрузка, то его деформация сначала нарастает быстро, а затем все медленнее — пока нарастание ее не прекратится; такой частный случай ползучести называется последействием. Если после снятия нагрузки через некоторый промежуток времени первоначальные размеры тела полностью восстанавливаются, то такое поведение материала называется упругим последействием.

Другим частным слхчаем ползучести является релаксация, представляющая собой процесс уменьшения напряжений в материале при неизменной величине его деформации, например уменьшение со временем растягивающего усилия в затянутых болтах.

Кратко рассмотрим теперь свойства пластмасс, которые в последнее время находят все более широкое применение в различных отраслях промышленности и строительства.

Пластмассы представляют собой искусственные смолы, в которые, как правило, введен какой-либо наполнитель (древесный, стекловолокнистый, металлический порошок и др.). Достоинством пластмасс является малый удельный вес, высокая стойкость к агрессивным средам, малая теплопроводность, хороший внешний вид изделий, простота технологии их изготовления.

Важнейшими из пластмасс являются: текстолит и древеснослоистые пластики, применяемые в машиностроении для изготовления зубчатых колес и вкладышей подшипников; винипласт, поливинилхлорид и полиэтилен, применяемые, в частности для изготовления различных трубопроводов; стекловолокнистые анизотропные материалы (СВАМ), имеющие весьма широкие перспективы применения в электротехнической и радиотехнической (электроизоляционные материалы и различная арматура), судостроительной (корпуса катеров, баки и т. д.), автомобильной (кузова автомашин и прицепов), химической (трубы и резервуары), нефтяной (различного рода трубы и резервуары) и других отраслях промышленности, а также в строительстве (панели и плиты для стен и перекрытий, арматура для бетона и др.) и на железнодорожном транспорте (корпуса вагонов, цистерны).

СВАМ является высокопрочным материалом с пределом прочности примерно 5000 и 9000 кгс/см2 (при отношении числа продольных слоев к числу поперечных соответственно 1:1 и 10:1), обладающим в то же время малым удельным весом — всего 1,9.

Жесткость СВАМа весьма высока; так, при растяжении вдоль волокон (для СВАМа 1:1), т. е. величина Е лишь вдвое меньше, чем у дюралюмина. Следует заметить, что наименьшее значение () модуль упругости имеет при растяжении под углом 45° к направлению волокон.

На рис. 18.2 показана диаграмма, полученная при испытании образцов СВАМа на растяжение вдоль волокон. Из этой диаграммы видно, что материал деформируется по закону Гука почти до разрушения.

<< Предыдущий параграф Следующий параграф >>
Оглавление