ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 6.6. КРУЧЕНИЕ ПРЯМОГО БРУСА НЕКРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

Задачи определения напряжений и деформаций при кручении брусьев некруглого сечения нельзя решить методами сопротивления материалов. Такие задачи решаются методами теории упругости. В отличие от круглых брусьев, при кручении которых поперечные сечения остаются плоскими, сечения стержней любой другой формы искривляются. При этом различные точки одного поперечного сечения смещаются друг относительно друга параллельно оси стержня — происходит так называемая депланаиия поперечного сечения.

Рис. 17.6.

Рис. 18.6

На рис. 17.6 показана депланация прямоугольных поперечных сечений скручиваемого стержня; на рис. 18.6 она изображена с помощью горизонталей. Сплошные горизонтали показывают выпуклость, штриховые — вогнутость; диагонали и оси симметрии поперечного сечения остаются в одной плоскости и не искривляются.

В поперечном сечении скручиваемого бруса касательное напряжение в каждой точке, расположенной в непосредственной близости от боковой поверхности стержня, всегда направлено параллельно касательной к контуру сечения (рис. 19.6, а). Действительно, если касательное напряжение в этой точке направить под углом к касательной, то его составляющая перпендикулярная к касательной, будет отличной от нуля (рис. 19.6, б). Тогда и составляющая касательного напряжения на боковой поверхности стержня, параллельная его оси, на основании закона парности касательных напряжений, будет равняться т. е. будет отличной от нуля. Но этого быть не может, так как при кручении напряжения на боковой поверхности отсутствуют.

Следовательно, в точках поперечного сечения брусау около его контура, могут возникать касательные напряжения, лишь направленные вдоль контура (рис. 20.6).

Так как напряжения в точках контура поперечного сечения направлены параллельно касательным к контуру, то контур представляет собой как бы траекторию касательных напряжений.

Рис. 19.6

Это позволяет наметить примерный характер траекторий и внутри контура. Траектории касательных напряжений (силовые линии) для некоторых форм сечений показаны на рис. 21.6. Рассмотрение их позволяет сделать некоторые выводы не только о направлении, но и о величине касательных напряжений. Так, например, на рис. 21.6, а видно, что силовые линии более сгущены у середины длинной стороны прямоугольника, чем короткой; следовательно, касательные напряжения у середины длинной стороны имеют большую величину, чем у середины короткой.

Рис. 20.6

Рис. 21.6

Рассмотрение силовых линий, изображенных на рис. 21.6,б, в, показывает, что в замкнутом кольце крутящий момент создает элементарные пары из сил с плечами, примерно равными по величине среднему диаметру кольца D; в разрезанном же кольце плечи элементарных пар составляют часть толщины кольца , т. е. эти плечи значительно меньше диаметра D.

Следовательно, при одних и тех же крутящих моментах касательные напряжения в разрезанном кольце значительно больше, чем в неразрезанном; другими словами, сопротивляемость разрезанного кольца кручению ниже, чем неразрезанного.

Рис. 22.6

Расположение силовых линий касательных напряжений подобно характеру распределения скоростей течения жидкости при вращательном движении ее в сосуде, имеющем форму поперечного сечения скручиваемого бруса. Такое подобие, называемое гидродинамической аналогией, облегчает построение силовых линий касательных напряжений. Из него, в частности, следует, что с приближением к входящим углам контура поперечного сечения стержня (угол 6 на рис. 22.6) напряжения при кручении резко возрастают, так как возрастают скорости движения жидкости около таких углов. Для уменьшения этих напряжений входящие углы целесообразно заменять выкружками. Около внешних углов (углы 1—5 на рис. 22.6) происходит застой жидкости, и, следовательно, касательные напряжения там равны нулю.

Для удобства пользования формулам, применяемым при расчете на кручение брусьев некруглого сечения, придается такой же вид, как и в случае круглого сечения. В соответствии с этим наибольшие касательные напряжения в поперечном сечении бруса некруглого сечения определяются по формуле

а углы закручивания по формуле

Значения и зависят от формы поперечного сечения бруса Ниже приводятся формулы для их определения в случаях прямоугольного сечения и для тонкостенных стержней открытого профиля.

Брус прямоугольного сечения

Если обозначить большую сторону прямоугольного сечения Л и меньшую b, то

где определяются по табл. 1.6 в зависимости от отношения сторон

При можно пользоваться упрощенными формулами

Напряжения [см. формулу (32.6)] возникают в серединах длинных сторон прямоугольника. Касательные напряжения в серединах коротких сторон

(36.6)

где у определяется по табл. 1.6; при можно принимать

Таблица 1.6

Тонкостенные стержни открытого профиля

Сечение стержня разбивается на тонкостенных элементов в виде прямоугольников. Для всего стержня

где - значение для i-го элемента, подсчитанное по формуле (35.6); суммирование производится по всем тонкостенным элементам

где - размер меньшей стороны прямоугольного элемента, имеющего наибольшую толщину.

Наибольшие касательные напряжения возникают в серединах длинных сторон элемента, имеющего наибольшую толщину.

Если в сечении тонкостенного стержня имеются криволинейные элементы, то для них значения определяются как для прямоугольников той же толщины и с длиной А, равной длине оси элемента.

Формулы (37.6) и (38.6) практически являются точными, если сечение состоит из прямоугольных элементов, для каждого из которых . Но ими можно пользоваться для приближенных расчетов и при , подсчитывая при этом по формуле (34.6).

При расчете на кручение тонкостенных стержней из прокатных профилей к величине , полученной по формуле (37.6), вводится поправочный коэффициент, имеющий следующие значения:

<< Предыдущий параграф Следующий параграф >>
Оглавление