ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 9.5. ВЫЧИСЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ СЛОЖНЫХ СЕЧЕНИЙ

Способ вычисления моментов инерции сложных сечений основан на том, что любой интеграл можно рассматривать как сумму интегралов и, следовательно, момент инерции любого сечения вычислять как сумму моментов инерции отдельных его частей.

Поэтому для вычисления моментов инерции сложное сечение разбивается на ряд простых частей (фигур) с таким расчетом, чтобы их геометрические характеристики можно было вычислить по известным формулам или найти по специальным справочным таблицам.

В ряде случаев при разбивке на простые фигуры для уменьшения числа или упрощения их формы сложное сечение целесообразно дополнять некоторыми площадями. Так, например, при определении геометрических характеристик сечения, показанного на рис. 22.5, а, его целесообразно дополнить до прямоугольника , а затем из геометрических характеристик этого прямоугольника вычесть характеристики добавленной части . Аналогично поступают и при наличии отверстий (рис. 22.5, б).

Рис. 22.5

После разбивки сложного сечения на простые части для каждой из них выбирается прямоугольная система координат, относительно которой надо определить моменты инерции соответствующей части. Все такие системы координат принимаются параллельными друг другу для того, чтобы затем путем параллельного переноса осей можно было подсчитать моменты инерции всех частей относительно системы координат, общей для всего сложного сечения.

Как правило, система координат для каждой простой фигуры принимается центральная, т. е. ее начало совпадает с центром тяжести этой фигуры. В этом случае последующий подсчет моментов инерции при переходе к другим параллельным осям упрощается, так как формулы перехода от центральных осей имеют более простой вид, чем от нецентральных.

Следующим этапом является вычисление площадей каждой простой фигуры, а также ее осевых и центробежного моментов инерции относительно осей выбранной для нее системы координат. Статические моменты относительно этих осей, как правило, равны нулю, так как для каждой из частей сечения эти оси обычно являются центральными. В случаях, когда это нецентральные оси, необходимо вычислять статические моменты.

Полярный момент инерции вычисляется только для круглого (сплошного или кольцевого) сечения по готовым формулам; для сечений других форм эта геометрическая характеристика не имеет какого-либо значения, так как при расчетах она не используется.

Осевые и центробежный моменты инерции каждой простой фигуры относительно осей ее системы координат подсчитываются по имеющимся для такой фигуры формулам или таблицам. Для некоторых фигур имеющиеся формулы и таблицы не позволяют определить необходимые осевые и центробежный моменты инерции; в этих случаях приходится пользоваться формулами перехода к новым осям (обычно для случая поворота осей).

В таблицах сортамента величины центробежных моментов инерции для уголков не указаны. Методика определения таких моментов инерции рассмотрена в примере 4.5.

В подавляющем большинстве случаев конечной целью вычисления геометрических характеристик сечения является определение его главных центральных моментов инерции и положения главных центральных осей инерции. Поэтому следующим этапом вычисления является определение координат центра тяжести заданного сечения [по формулам (6.5) и (7.5)] в некоторой произвольной (случайной) системе координат Через этот центр тяжести сечения проводятся вспомогательные (не главные) центральные оси параллельные осям системы координат простых фигур.

Затем с помощью формул, устанавливающих зависимости между моментами инерции для параллельных осей (см. § 5.5), определяются моменты инерции каждой простой фигуры относительно вспомогательных, центральных осей Путем суммирования моментов инерции каждой простой фигуры относительно осей определяются моменты инерции всего сложного сечения относительно этих осей; при этом моменты инерции отверстий или добавленных площадок вычитаются.

Угол характеризующий положение главных осей инерции, и величины главных моментов инерции вычисляются по формулам (36.5) и (38.5) или определяются графически — с помощью круга Мора (см. § 8.5). После вычисления величин рекомендуется проверить, соблюдается ли равенство — при этом следует иметь в виду, что соблюдение этого равенства не гарантирует правильности вычисления значений

<< Предыдущий параграф Следующий параграф >>
Оглавление