1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
Макеты страниц
§ 3.9. ЯДРО СЕЧЕНИЯНекоторые материалы (бетон, кирпичная кладка) могут воспринимать лишь весьма незначительные растягивающие напряжения, а другие (например, грунт) не могут вовсе сопротивляться растяжению. Такие материалы используются для изготовления лишь элементов конструкций, в которых не возникают растягивающие напряжения. Поэтому они не применяются для изготовления элементов конструкций, испытывающих изгиб, кручение, центральное и внецентренное растяжение. В центрально сжатых элементах растягивающие напряжения не возникают, а потому они могут изготовляться из указанных материалов. Из таких материалов могут изготовляться и внецентренно сжатые элементы, если в них не возникают растягивающие напряжения. Это происходит в случае, когда точка приложения сжимающей силы расположена внутри некоторой центральной области поперечного сечения, называемой ядром, или на границе этой области. Ядром сечения называется его некоторая центральная область, обладающая тем свойством, что сжимающая сила, приложенная в любой ее точке, вызывает во всех точках поперечного сечения бруса сжимающие напряжения, т. е. напряжения одного знака. Если сила приложена за пределами ядра сечения, то в поперечном сечении возникают и сжимающие, и растягивающие напряжения. В этом случае, следовательно, нулевая линия пересекает поперечное сечение бруса. Если сила приложена на границе ядра сечения, то нулевая линия касается контура сечения (в точке или по линии); в месте касания нормальные напряжения равны нулю. При расчете внецентренно сжатых элементов, изготовляемых из материала, плохо воспринимающего растягивающие напряжения, важно знать форму и размеры ядра сечения. Это позволяет, не вычисляя величин напряжений, по эксцентриситету сжимающей силы устанавливать, возникнут в поперечном сечении растягивающие напряжения или нет. Рассмотрим методику построения ядра сечения. На рис. 17.9 изображено поперечное сечение бруса, показаны главные оси В это уравнение входят произведения координат точки А (полюса), в которой приложена сжимающая сила, и точки С, в которой от этой силы нормальные напряжения равны нулю. Рис. 17.9 Рис. 18.9 Из уравнения видно, что если точку С принять за полюс, то нормальные напряжения в точке А будут равны нулю; в этом случае, следовательно, нулевая линия пройдет через точку А. Аналогично при любых других положениях полюса на прямой Рассмотрим теперь поперечное сечение в виде многоугольника, изображенного на рис. 18.9. Установим положение прямой Рассмотрим точку Аналогично при полюсе в точке Таким образом, при перемещении полюса по контуру Рис. 19.9 Из формулы (16.9) следует, что с приближением полюса к центру тяжести сечения нулевые линии удаляются от него. Поэтому при полюсе, расположенном внутри контура Построение ядра сечения рекомендуется производить в следующем порядке. 1. Определить положения центра тяжести сечения и главных центральных осей инерции у и 2. Если сечение имеет вид многоугольника, то вершины его углов последовательно рассматривать как полюсы и для каждого такого полюса определять положение нулевой линии. Контур, ограниченный этими нулевыми линиями, образует ядро сечения. 3. Если многоугольное сечение имеет внутренние углы, например угол при вершине В (рис. 19.9), то эти углы при обходе вершин не рассматривают как полюсы; нулевая линия не может проходить через вершину В при полюсе, расположенном в пределах ядра, так как она при этом пересекла бы сечение. Построим ядро сечения для прямоугольника (рис. 20.9). Примем в качестве полюса вершину По значениям этих отрезков на рис. 20.9 построена нулевая линия Учитывая симметрию прямоугольного сечения относительно осей у и При построении ядра для сечения в виде круга (рис. 21.9) достаточно определить положение нулевой линии, соответствующее одному положению полюса. Рис. 20.9 Рис. 21.9 При полюсе в точке А, (с координатами Построенная по этим данным нулевая линия Из симметрии сечения относительно его центра тяжести следует, что при других положениях полюса на окружности диаметром d нулевые линии касаются концентрического с ней круга с меньшим диаметром, равным
|
Оглавление
|