ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 5.12. ПОСТРОЕНИЕ ЭПЮР ПОПЕРЕЧНЫХ И ПРОДОЛЬНЫХ СИЛ

После того как путем решения системы канонических уравнений найдены неизвестные усилия эти усилия и заданную нагрузку можно приложить к основной системе. Затем от их совместного действия обычным способом (как для статически определимых систем) можно определить поперечные силы Q и продольные силы N, возникающие в основной системе, и построить эпюры Q и N. Эти эпюры являются эпюрами поперечных и продольных сил и для заданной статически неопределимой системы.

Поперечные и продольные силы в статически неопределимой системе можно определить и иным путем — по эпюре изгибающих моментов, построенной для этой системы. Для получения необходимых формул рассмотрим прямолинейный элемент АВ длиной выделенный из статически неопределимой системы. На такой элемент в самом общем случае действуют следующие нагрузки (рис. 13.12, а):

а) заданная нагрузка;

б) изгибающие моменты МАВ и МЯА, возникающие в поперечных сечениях А и В элемента АВ, значения которых устанавливаются по эпюре изгибающих моментов;

в) поперечные силы и продольные силы возникающие в поперечных сечениях А и В элемента АВ.

Первый индекс при усилиях соответствует положению того сечения, в котором действует усилие, а оба индекса в месте — элементу рамы, которому это сечение принадлежит. Так, например,

МАВ означает изгибающий момент в сечении А элемента АВ.

Так как элемент А В находится в равновесии, то силы и NRA можно рассматривать как опорные реакции RA, RB и Н соответственно простой балки на двух опорах, изображенной на рис. 13.12, б.

Следовательно, внутренние усилия в поперечных сечениях с абсциссой элемента АВ рамы (рис. 13.12, а) и балки АВ (рис. 13.12, б) одинаковы. Поэтому на основании принципа независимости действия сил изгибающий момент М в сечении элемента АВ равен сумме моментов, возникающих в том же сечении балки АВ от нагрузок, показанных на рис. 13.12, в, г:

Здесь — изгибающий момент в сечении .v простой балки от заданной нагрузки (рис. 13.12, в); — изгибающий момент в сечении простой балки от моментов МАВ и МВА (рис. 13.12, г).

Рис. 13.12

На основании теоремы Журавского [формула (6.7)], продифференцировав выражение (8.12), получим

или

Здесь поперечная сила в сечении простой балки от заданной нагрузки (рис. 13.12, в).

Формулы (8.12) и (9.12) позволяют определить изгибающие моменты и поперечные силы в любом сечении любого прямолинейного участка АВ рамы, если известны изгибающие моменты в сечениях А и В и заданная нагрузка, приложенная в пределах этого участка.

Если ординаты эпюры М отложены со стороны сжатого волокна каждого элемента рамы, то для выяснения знака поперечной силы в сечениях этих элементов можно использовать следующее правило: поперечная сила положительна, если для совмещения касательной (к эпюре изгибающих моментов) с осью элемента необходимо вращать касательную по часовой стрелке; при этом вращение всегда производится так, что угол поворота не превышает 90°. Числовое значение поперечной силы пропорционально тангенсу угла поворота.

Для определения направления поперечной силы необходимо провести разрез через данное сечение элемента и к каждой части такого элемента в разрезе приложить поперечную силу; при этом если поперечная сила положительна, то она должна вращать каждую часть элемента относительно другого ее конца по часовой стрелке.

Для определения величин продольных сил N можно вырезать узлы рамы, приложить к ним действующую на них внешнюю нагрузку, а также неизвестные продольные и найденные поперечные силы и затем составить для этих узлов уравнения равновесия, из которых и определить продольные силы. Для этого можно использовать и прием, указанный в начале настоящего параграфа.

Построим в качестве примера эпюры Q и N для рамы, рассчитанной в § 3.12. На рис. 14.12, а показана заданная рама, на рис. 14.12,б - основная система с действующей на нее заданной нагрузкой и найденными неизвестными усилиями, а на рис. 14.12, в — окончательная эпюра изгибающих моментов в раме.

Составим выражения поперечных и продольных сил в сечениях стойки и ригеля рамы (рис. 14.12,б):

б) в сечении

Эпюры Q и N, построенные по найденным значениями этих сил, изображены на рис. 14.12, г, д.

Определим теперь те же значения другим способом. По формуле (9.12) и окончательной эпюре М (рис. 14.12, в) находим:

в сечении 1-1 (рис. 14.12,б)

а в сечении II-II

Эти выражения совпадают с выражениями, полученными выше другим способом.

Рис. 14.12

Используем теперь построенную эпюру Q (рис. 14.12, г) для определения продольных сил в стойке и ригеле рамы. Вырежем из рамы верхний левый узел и приложим к нему известные поперечные и неизвестные продольные силы (рис. 14.12, е). Из условий равновесия в виде сумм проекций этих сил на горизонтальную и вертикальную оси находим:

Полученные значения продольных сил совпадают со значениями, найденными выше другим способом. Знаки минус указывают на то, что силы имеют направления, противоположные направлениям, показанным на рис. 14.12, е, т. е. они вызывают не растяжение элементов, а их сжатие.

<< Предыдущий параграф Следующий параграф >>
Оглавление