ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава 12. РАСЧЕТ ПРОСТЕЙШИХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕВЫХ СИСТЕМ

§ 1.12. СТАТИЧЕСКАЯ НЕОПРЕДЕЛИМОСТЬ

Как уже известно, при расчете некоторых стержневых систем для определения усилий в них недостаточно использовать одни лишь уравнения статики, а необходимо составлять дополнительные уравнения — уравнения деформаций (перемещений). Такие системы называются статически неопределимыми.

В настоящей главе рассмотрены расчеты плоских статически неопределимых стержневых систем. Аналогичными способами рассчитывают и пространственные статически неопределимые системы.

Характерной особенностью статически неопределимых систем (в отличие от статически определимых) является то, что распределение усилий в них зависит не только от внешних сил, но и от соотношений между поперечными размерами отдельных элементов. Если элементы систем изготовлены из различных материалов, то распределение усилий также зависит от модулей упругости этих материалов (см. § 9.2).

Расчет статически неопределимой системы начинают с анализа ее схемы. Анализ необходим прежде всего для того, чтобы установить степень статической неопределимости.

Степень статической неопределимости равна числу лишних связей, удаление которых превращает статически неопределимую систему в статически определимую, геометрически неизменяемую систему.

Геометрически неизменяемой называется такая система, изменение фермы которой возможно лишь в связи с деформациями ее элементов.

Статически определимая система не имеет ни одной лишней связи; удаление из нее хотя бы одной связи превращает ее в геометрически изменяемую систему, т. е. в механизм.

Балка, показанная на рис. 1.12, а, является системой, один раз (или однажды) статически неопределимой, так как один из опорных стержней представляет собой лишнюю (избыточную) связь балки с опорой (с основанием).

Отбросив один из опорных стержней (рис. 1.12, б) или включив в балку один шарнир (рис. 1.12, в), получим статически определимую, геометрически неизменяемую систему.

Систему, состоящую из ряда элементов (прямых или криволинейных), жестко (без шарниров) связанных между собой и образующих замкнутую цепь, будем называть замкнутым контуром.

Рис. 1.12

Рис. 2.12

Прямоугольная рама, изображенная на рис. 2.12, я, представляет собой замкнутый контур. Она трижды статически неопределима, так как для превращения ее в статически определимую необходимо, например, перерезать один из ее элементов (рис. 2.12, б) и тем самым устранить три лишние связи. Реакциями этих связей являются продольная сила, поперечная сила и изгибающий момент, действующие в месте разреза; их нельзя определить при помощи уравнений статики. В аналогичных условиях в смысле статической неопределимости находится любой замкнутый контур, который всегда трижды статически неопределим.

Рис. 3.12

Примером сооружения с одним замкнутым контуром является также система, изображенная на рис. 3.12, а. Замкнутым контуром является и бесшарнирная рама, изображенная на рис. 3.12, б; она ограничена снизу землей, которую можно рассматривать как бесконечно жесткий стержень.

В рамной конструкции, представленной на рис. 4.12, а, верхний контур снабжен шарниром; в разрезе, проведенном по этому шарниру, действуют только два внутренних усилия: N и Q (рис. 4.12, б). Такой контур дважды статически неопределим. Если рассматривать всю систему в целом, то она пять раз статически неопределима, так как нижний контур рамы замкнутый и, следовательно, неопределим трижды.

Систему, освобожденную от лишних связей, можно представить состоящей из двух защемленных внизу стержней с горизонтальными консолями (рис. 4.12, б).

Выяснить степень статической неопределимости этой системы можно иначе. Верхний контур рамы, имеющий один внутренний шарнир, дважды статически неопределим (имеет две лишние связи). Кроме того, каждая из заделок дает три составляющие опорной реакции (две силы и момент), т. е. на раму наложено шесть внешних связей, а уравнений статики для плоской системы можно составить лишь три. Следовательно, три внешние связи являются лишними, а всего имеется пять лишних связей, т. е. система пять раз статически неопределима.

Рис. 4.12

Необходимо заметить, что исключение лишних связей для превращения одной и той же статически неопределимой конструкции в статически определимую можно произвести различными способами, однако число отбрасываемых связей всегда одно и то же. Так, например, статически определимые системы, изображенные на рис. 1.12, б, в, получены из статически неопределимой системы (см. рис. 1.12, а); одна — путем удаления промежуточной опоры, а другая — путем постановки промежуточного шарнира, т. е. удаления связи, препятствующей взаимному повороту частей балки, расположенных по обе стороны от введенного шарнира.

Включение шарнира в узел рамы, в котором сходятся два стержня, или же установка его в любое место на оси стержня нарушает (снимает) одну связь и снижает общую степень статической неопределимости системы на единицу. Такой шарнир будем называть одиночным, или простым.

При удалении связей системы необходимо следить за тем, чтобы получаемая конструкция была геометрически неизменяема. Поэтому в раме, показанной на рис. 5.12, а, имеющей одно лишнее опорное закрепление, было бы ошибочным удаление вертикального стерженька (рис. 5.12, б), так как оставшиеся три стерженька не могли бы препятствовать повороту рамы вокруг точки , в которой пересекаются их оси.

Правильный вариант удаления лишнего стержня показан на рис. 5.12, б.

Для конструкций со сложным внутренним образованием можно применить следующий общий прием определения степени статической неопределимости. Идея его заключается в том, что каждый шарнир, включенный в узел, соединяющий k стержней, снижает степень статической неопределимости на так как такой шарнир заменяет одиночных шарниров (рис. 6.12, а). Поэтому для определения степени статической неопределимости конструкции необходимо взять утроенное количество замкнутых контуров (предполагая, что все шарниры, в том числе и опорные, заменены жесткими соединениями) и затем уменьшить его на число включенных в конструкцию одиночных шарниров, учитывая при этом, что один общий шарнир эквивалентен одиночным шарнирам.

Рис. 5.12

Представим это в виде формулы

где - степень статической неопределимости системы; — число замкнутых контуров в конструкции в предположении отсутствия шарнирных соединений; — число одиночных шарниров; шарнир, соединяющий два стержня, считается за один (одиночный шарнир), соединяющий три стержня — за два одиночных шарнира (двойной шарнир) и т. д.

На рис. 6.12, б изображены одиночные шарниры, на рис. 6.12, в — двойные, а на рис. 6.12, г - тройные.

Шарнирно неподвижную опору (рис. 6.12, д) можно изображать в виде одного шарнира, связывающего конструкцию с землей (рис. 6.12, е). Если такая опора соединяет с землей один прямой или ломаный элемент конструкции (рис. 6.12, ж) и то ее следует рассматривать как одиночный шарнир, если два элемента (рис. 6.12, з), - то как двойной шарнир, и т. д.

Рассмотрим теперь раму, изображенную на рис. 7.12, а. Эту раму можно представлять как один замкнутый контур с введен ными в него двумя одиночными шарнирами (рис. 7.12, б). Степень ее статической неопределимости на основании формулы (1.12) равна единице:

Раму, изображенную на рис. 7.12, в, можно рассматривать как состоящую из двух замкнутых контуров с введенными в нее пятью одиночными шарнирами (рис. 7.12, г). Следовательно, степень статической неопределимости этой рамы равна единице:

Систему, изображенную на рис. 7.12, д, можно рассматривать как три замкнутых контура, в которые введены три одиночных и один двойной шарнир (посередине правой стойки).

Рис. 6.12

Следовательно, эта система четырежды статически неопределима:

Если в статически определимой системе устранить какую-либо связь, то система, как отмечалось, превратится в геометрически изменяемую. Следовательно, статически определимая система содержит в своем составе такое количество связей, которое является минимально необходимым для обеспечения ее геометрической неизменяемости; избыточные связи (сверх этого количества) создают статическую неопределимость.

Из любой статически неопределимой системы можно устранить по крайней мере одну связь без нарушения ее изменяемости; однако удаление некоторых связей может превратить статически неопределимую систему в геометрически изменяемую. Такие связи статически неопределимой системы являются абсолютно необходимыми. Усилия в них всегда можно определить при помощи одних лишь уравнении статики.

Рис. 7.12

Примером абсолютно необходимых связей являются вертикальные опорные стержни рамы, показанной на рис. 5.12, а; удаление одного из них делает раму геометрически изменяемой.

Связи, удаление которых не превращает статически неопределимую систему в геометрически изменяемую, называются условно необходимыми. Усилия в них нельзя определить при помощи одних лишь уравнений статики. Примером таких связей являются горизонтальные опорные стержни рамы, изображенной на рис. 5.12, а.

<< Предыдущий параграф Следующий параграф >>
Оглавление