Макеты страниц
Глава 12. РАСЧЕТ ПРОСТЕЙШИХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕВЫХ СИСТЕМ§ 1.12. СТАТИЧЕСКАЯ НЕОПРЕДЕЛИМОСТЬКак уже известно, при расчете некоторых стержневых систем для определения усилий в них недостаточно использовать одни лишь уравнения статики, а необходимо составлять дополнительные уравнения — уравнения деформаций (перемещений). Такие системы называются статически неопределимыми. В настоящей главе рассмотрены расчеты плоских статически неопределимых стержневых систем. Аналогичными способами рассчитывают и пространственные статически неопределимые системы. Характерной особенностью статически неопределимых систем (в отличие от статически определимых) является то, что распределение усилий в них зависит не только от внешних сил, но и от соотношений между поперечными размерами отдельных элементов. Если элементы систем изготовлены из различных материалов, то распределение усилий также зависит от модулей упругости этих материалов (см. § 9.2). Расчет статически неопределимой системы начинают с анализа ее схемы. Анализ необходим прежде всего для того, чтобы установить степень статической неопределимости. Степень статической неопределимости равна числу лишних связей, удаление которых превращает статически неопределимую систему в статически определимую, геометрически неизменяемую систему. Геометрически неизменяемой называется такая система, изменение фермы которой возможно лишь в связи с деформациями ее элементов. Статически определимая система не имеет ни одной лишней связи; удаление из нее хотя бы одной связи превращает ее в геометрически изменяемую систему, т. е. в механизм. Балка, показанная на рис. 1.12, а, является системой, один раз (или однажды) статически неопределимой, так как один из опорных стержней представляет собой лишнюю (избыточную) связь балки с опорой (с основанием). Отбросив один из опорных стержней (рис. 1.12, б) или включив в балку один шарнир (рис. 1.12, в), получим статически определимую, геометрически неизменяемую систему. Систему, состоящую из ряда элементов (прямых или криволинейных), жестко (без шарниров) связанных между собой и образующих замкнутую цепь, будем называть замкнутым контуром. Рис. 1.12 Рис. 2.12 Прямоугольная рама, изображенная на рис. 2.12, я, представляет собой замкнутый контур. Она трижды статически неопределима, так как для превращения ее в статически определимую необходимо, например, перерезать один из ее элементов (рис. 2.12, б) и тем самым устранить три лишние связи. Реакциями этих связей являются продольная сила, поперечная сила и изгибающий момент, действующие в месте разреза; их нельзя определить при помощи уравнений статики. В аналогичных условиях в смысле статической неопределимости находится любой замкнутый контур, который всегда трижды статически неопределим. Рис. 3.12 Примером сооружения с одним замкнутым контуром является также система, изображенная на рис. 3.12, а. Замкнутым контуром является и бесшарнирная рама, изображенная на рис. 3.12, б; она ограничена снизу землей, которую можно рассматривать как бесконечно жесткий стержень. В рамной конструкции, представленной на рис. 4.12, а, верхний контур снабжен шарниром; в разрезе, проведенном по этому шарниру, действуют только два внутренних усилия: N и Q (рис. 4.12, б). Такой контур дважды статически неопределим. Если рассматривать всю систему в целом, то она пять раз статически неопределима, так как нижний контур рамы замкнутый и, следовательно, неопределим трижды. Систему, освобожденную от лишних связей, можно представить состоящей из двух защемленных внизу стержней с горизонтальными консолями (рис. 4.12, б). Выяснить степень статической неопределимости этой системы можно иначе. Верхний контур рамы, имеющий один внутренний шарнир, дважды статически неопределим (имеет две лишние связи). Кроме того, каждая из заделок дает три составляющие опорной реакции (две силы и момент), т. е. на раму наложено шесть внешних связей, а уравнений статики для плоской системы можно составить лишь три. Следовательно, три внешние связи являются лишними, а всего имеется пять лишних связей, т. е. система пять раз статически неопределима. Рис. 4.12 Необходимо заметить, что исключение лишних связей для превращения одной и той же статически неопределимой конструкции в статически определимую можно произвести различными способами, однако число отбрасываемых связей всегда одно и то же. Так, например, статически определимые системы, изображенные на рис. 1.12, б, в, получены из статически неопределимой системы (см. рис. 1.12, а); одна — путем удаления промежуточной опоры, а другая — путем постановки промежуточного шарнира, т. е. удаления связи, препятствующей взаимному повороту частей балки, расположенных по обе стороны от введенного шарнира. Включение шарнира в узел рамы, в котором сходятся два стержня, или же установка его в любое место на оси стержня нарушает (снимает) одну связь и снижает общую степень статической неопределимости системы на единицу. Такой шарнир будем называть одиночным, или простым. При удалении связей системы необходимо следить за тем, чтобы получаемая конструкция была геометрически неизменяема. Поэтому в раме, показанной на рис. 5.12, а, имеющей одно лишнее опорное закрепление, было бы ошибочным удаление вертикального стерженька (рис. 5.12, б), так как оставшиеся три стерженька не могли бы препятствовать повороту рамы вокруг точки , в которой пересекаются их оси. Правильный вариант удаления лишнего стержня показан на рис. 5.12, б. Для конструкций со сложным внутренним образованием можно применить следующий общий прием определения степени статической неопределимости. Идея его заключается в том, что каждый шарнир, включенный в узел, соединяющий k стержней, снижает степень статической неопределимости на так как такой шарнир заменяет одиночных шарниров (рис. 6.12, а). Поэтому для определения степени статической неопределимости конструкции необходимо взять утроенное количество замкнутых контуров (предполагая, что все шарниры, в том числе и опорные, заменены жесткими соединениями) и затем уменьшить его на число включенных в конструкцию одиночных шарниров, учитывая при этом, что один общий шарнир эквивалентен одиночным шарнирам. Рис. 5.12 Представим это в виде формулы где - степень статической неопределимости системы; — число замкнутых контуров в конструкции в предположении отсутствия шарнирных соединений; — число одиночных шарниров; шарнир, соединяющий два стержня, считается за один (одиночный шарнир), соединяющий три стержня — за два одиночных шарнира (двойной шарнир) и т. д. На рис. 6.12, б изображены одиночные шарниры, на рис. 6.12, в — двойные, а на рис. 6.12, г - тройные. Шарнирно неподвижную опору (рис. 6.12, д) можно изображать в виде одного шарнира, связывающего конструкцию с землей (рис. 6.12, е). Если такая опора соединяет с землей один прямой или ломаный элемент конструкции (рис. 6.12, ж) и то ее следует рассматривать как одиночный шарнир, если два элемента (рис. 6.12, з), - то как двойной шарнир, и т. д. Рассмотрим теперь раму, изображенную на рис. 7.12, а. Эту раму можно представлять как один замкнутый контур с введен ными в него двумя одиночными шарнирами (рис. 7.12, б). Степень ее статической неопределимости на основании формулы (1.12) равна единице: Раму, изображенную на рис. 7.12, в, можно рассматривать как состоящую из двух замкнутых контуров с введенными в нее пятью одиночными шарнирами (рис. 7.12, г). Следовательно, степень статической неопределимости этой рамы равна единице: Систему, изображенную на рис. 7.12, д, можно рассматривать как три замкнутых контура, в которые введены три одиночных и один двойной шарнир (посередине правой стойки). Рис. 6.12 Следовательно, эта система четырежды статически неопределима: Если в статически определимой системе устранить какую-либо связь, то система, как отмечалось, превратится в геометрически изменяемую. Следовательно, статически определимая система содержит в своем составе такое количество связей, которое является минимально необходимым для обеспечения ее геометрической неизменяемости; избыточные связи (сверх этого количества) создают статическую неопределимость. Из любой статически неопределимой системы можно устранить по крайней мере одну связь без нарушения ее изменяемости; однако удаление некоторых связей может превратить статически неопределимую систему в геометрически изменяемую. Такие связи статически неопределимой системы являются абсолютно необходимыми. Усилия в них всегда можно определить при помощи одних лишь уравнении статики. Рис. 7.12 Примером абсолютно необходимых связей являются вертикальные опорные стержни рамы, показанной на рис. 5.12, а; удаление одного из них делает раму геометрически изменяемой. Связи, удаление которых не превращает статически неопределимую систему в геометрически изменяемую, называются условно необходимыми. Усилия в них нельзя определить при помощи одних лишь уравнений статики. Примером таких связей являются горизонтальные опорные стержни рамы, изображенной на рис. 5.12, а.
|
Оглавление
|